@article{SarmentoJeltschThuilleretal.2013, author = {Sarmento, Juliano Sarmento and Jeltsch, Florian and Thuiller, Wilfried and Higgins, Steven and Midgley, Guy F. and Rebelo, Anthony G. and Rouget, Mathieu and Schurr, Frank Martin}, title = {Impacts of past habitat loss and future climate change on the range dynamics of South African Proteaceae}, series = {Diversity \& distributions : a journal of biological invasions and biodiversity}, volume = {19}, journal = {Diversity \& distributions : a journal of biological invasions and biodiversity}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1366-9516}, doi = {10.1111/ddi.12011}, pages = {363 -- 376}, year = {2013}, abstract = {Aim To assess how habitat loss and climate change interact in affecting the range dynamics of species and to quantify how predicted range dynamics depend on demographic properties of species and the severity of environmental change. Location South African Cape Floristic Region. Methods We use data-driven demographic models to assess the impacts of past habitat loss and future climate change on range size, range filing and abundances of eight species of woody plants (Proteaceae). The species-specific models employ a hybrid approach that simulates population dynamics and long-distance dispersal on top of expected spatio-temporal dynamics of suitable habitat. Results Climate change was mainly predicted to reduce range size and range filling (because of a combination of strong habitat shifts with low migration ability). In contrast, habitat loss mostly decreased mean local abundance. For most species and response measures, the combination of habitat loss and climate change had the most severe effect. Yet, this combined effect was mostly smaller than expected from adding or multiplying effects of the individual environmental drivers. This seems to be because climate change shifts suitable habitats to regions less affected by habitat loss. Interspecific variation in range size responses depended mostly on the severity of environmental change, whereas responses in range filling and local abundance depended mostly on demographic properties of species. While most surviving populations concentrated in areas that remain climatically suitable, refugia for multiple species were overestimated by simply overlying habitat models and ignoring demography. Main conclusions Demographic models of range dynamics can simultaneously predict the response of range size, abundance and range filling to multiple drivers of environmental change. Demographic knowledge is particularly needed to predict abundance responses and to identify areas that can serve as biodiversity refugia under climate change. These findings highlight the need for data-driven, demographic assessments in conservation biogeography.}, language = {en} } @article{LevermannClarkMarzeionetal.2013, author = {Levermann, Anders and Clark, Peter U. and Marzeion, Ben and Milne, Glenn A. and Pollard, David and Radic, Valentina and Robinson, Alexander}, title = {The multimillennial sea-level commitment of global warming}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {110}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {34}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1219414110}, pages = {13745 -- 13750}, year = {2013}, abstract = {Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m degrees C-1 and 1.2 m degrees C-1 of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m degrees C-1 within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales.}, language = {en} } @article{WasofLenoirGalletMoronetal.2013, author = {Wasof, Safaa and Lenoir, Jonathan and Gallet-Moron, Emilie and Jamoneau, Aurelien and Brunet, J{\"o}rg and Cousins, Sara A. O. and De Frenne, Pieter and Diekmann, Martin and Hermy, Martin and Kolb, Annette and Liira, Jaan and Verheyen, Kris and Wulf, Monika and Decocq, Guillaume}, title = {Ecological niche shifts of understorey plants along a latitudinal gradient of temperate forests in north-western Europe}, series = {Global ecology and biogeography : a journal of macroecology}, volume = {22}, journal = {Global ecology and biogeography : a journal of macroecology}, number = {10}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1466-822X}, doi = {10.1111/geb.12073}, pages = {1130 -- 1140}, year = {2013}, abstract = {Aim In response to environmental changes and to avoid extinction, species may either track suitable environmental conditions or adapt to the modified environment. However, whether and how species adapt to environmental changes remains unclear. By focusing on the realized niche (i.e. the actual space that a species inhabits and the resources it can access as a result of limiting biotic factors present in its habitat), we here examine shifts in the realized-niche width (i.e. ecological amplitude) and position (i.e. ecological optimum) of 26 common and widespread forest understorey plants across their distributional ranges. Location Temperate forests along a ca. 1800-km-long latitudinal gradient from northern France to central Sweden and Estonia. Methods We derived species' realized-niche width from a -diversity metric, which increases if the focal species co-occurs with more species. Based on the concept that species' scores in a detrended correspondence analysis (DCA) represent the locations of their realized-niche positions, we developed a novel approach to run species-specific DCAs allowing the focal species to shift its realized-niche position along the studied latitudinal gradient while the realized-niche positions of other species were held constant. Results None of the 26 species maintained both their realized-niche width and position along the latitudinal gradient. Few species (9 of 26: 35\%) shifted their realized-niche width, but all shifted their realized-niche position. With increasing latitude, most species (22 of 26: 85\%) shifted their realized-niche position for soil nutrients and pH towards nutrient-poorer and more acidic soils. Main conclusions Forest understorey plants shifted their realized niche along the latitudinal gradient, suggesting local adaptation and/or plasticity. This macroecological pattern casts doubt on the idea that the realized niche is stable in space and time, which is a key assumption of species distribution models used to predict the future of biodiversity, hence raising concern about predicted extinction rates.}, language = {en} } @article{DeFrenneRodriguezSanchezCoomesetal.2013, author = {De Frenne, Pieter and Rodriguez-Sanchez, Francisco and Coomes, David Anthony and B{\"a}ten, Lander and Verstr{\"a}ten, Gorik and Vellend, Mark and Bernhardt-R{\"o}mermann, Markus and Brown, Carissa D. and Brunet, J{\"o}rg and Cornelis, Johnny and Decocq, Guillaume M. and Dierschke, Hartmut and Eriksson, Ove and Gilliam, Frank S. and Hedl, Radim and Heinken, Thilo and Hermy, Martin and Hommel, Patrick and Jenkins, Michael A. and Kelly, Daniel L. and Kirby, Keith J. and Mitchell, Fraser J. G. and Naaf, Tobias and Newman, Miles and Peterken, George and Petrik, Petr and Schultz, Jan and Sonnier, Gregory and Van Calster, Hans and Waller, Donald M. and Walther, Gian-Reto and White, Peter S. and Woods, Kerry D. and Wulf, Monika and Graae, Bente Jessen and Verheyen, Kris}, title = {Microclimate moderates plant responses to macroclimate warming}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {110}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {46}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1311190110}, pages = {18561 -- 18565}, year = {2013}, abstract = {Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., "thermophilization" of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that "climatic lags" may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass-e.g., for bioenergy-may open forest canopies and accelerate thermophilization of temperate forest biodiversity.}, language = {en} } @phdthesis{Heybl2016, author = {Heybl, Christine}, title = {Der Klimawandel}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102442}, school = {Universit{\"a}t Potsdam}, pages = {293}, year = {2016}, abstract = {Was ist Gerechtigkeit? Wie k{\"o}nnten gerechte Regelungen aussehen f{\"u}r die Katastrophen und Leiden, die der Klimawandel ausl{\"o}st bzw. ausl{\"o}sen wird? Diese sind h{\"a}ufig ungerecht, weil sie oft deutlich st{\"a}rker diejenigen treffen, die am wenigsten zur Klimaver{\"a}nderung beigetragen haben. Doch was genau verstehen wir unter dem Schlagwort: ‚Klimawandel'? Und kann dieser wirklich den Menschen direkt treffen? Ein kurzer naturwissenschaftlicher Abriss kl{\"a}rt hier die wichtigsten Fragen. Da es sich hierbei um eine philosophische Arbeit handelt, muss zun{\"a}chst gekl{\"a}rt werden, ob der Mensch {\"u}berhaupt die Ursache von so etwas sein kann wie z.B. der Klimaerw{\"a}rmung. Robert Spaemanns These dazu ist, dass der Mensch durch seinen freien Willen mit seinen Einzelhandlungen das Weltgeschehen ver{\"a}ndern kann. Hans Jonas f{\"u}gt dem hinzu, dass wir durch diese F{\"a}higkeit, verantwortlich sind f{\"u}r die gewollten und ungewollten Folgen unserer Handlungen. Damit w{\"a}re aus naturwissenschaftlicher Sicht (1. Teil der Arbeit) und aus philosophischer Sicht (Anfang 2. Teil) gekl{\"a}rt, dass der Mensch mit gr{\"o}ßter Wahrscheinlichkeit die Ursache des Klimawandels ist und diese Verursachung moralische Konsequenzen f{\"u}r ihn hat. Ein philosophischer Gerechtigkeitsbegriff wird aus der Kantischen Rechts- und Moralphilosophie entwickelt, weil diese die einzige ist, die dem Menschen {\"u}berhaupt ein Recht auf Rechte zusprechen kann. Diese entspringt der transzendentalen Freiheitsf{\"a}higkeit des Menschen, weshalb jedem das Recht auf Rechte absolut und immer zukommt. Gleichzeitig m{\"u}ndet Kants Philosophie wiederum in dem Freiheitsgedanken, indem Gerechtigkeit nur existiert, wenn alle Menschen gleichermaßen frei sein k{\"o}nnen. Was heißt das konkret? Wie k{\"o}nnte Gerechtigkeit in der Realit{\"a}t wirklich umgesetzt werden? Die Realisierung schl{\"a}gt zwei Grundrichtungen ein. John Rawls und Stefan Gosepath besch{\"a}ftigen sich u.a. eingehend mit der prozeduralen Gerechtigkeit, was bedeutet, dass gerechte Verfahren gefunden werden, die das gesellschaftliche Zusammenleben regeln. Das leitende Prinzip hierf{\"u}r ist vor allem: ein Mitbestimmungsrecht aller, so dass sich im Prinzip alle B{\"u}rger ihre Gesetze selbst geben und damit frei handeln. In Bezug auf den Klimawandel steht die zweite Ausrichtung im Vordergrund - die distributive oder auch Verteilungs-Gerechtigkeit. Materielle G{\"u}ter m{\"u}ssen so aufgeteilt werden, dass auch trotz empirischer Unterschiede alle Menschen als moralische Subjekte anerkannt werden und frei sein k{\"o}nnen. Doch sind diese philosophischen Schlussfolgerungen nicht viel zu abstrakt, um auf ein ebenso schwer fassbares und globales Problem wie den Klimawandel angewendet zu werden? Was k{\"o}nnte daher eine Klimagerechtigkeit sein? Es gibt viele Gerechtigkeitsprinzipien, die vorgeben, eine gerechte Grundlage f{\"u}r die Klimaprobleme zu bieten wie z.B. das Verursacherprinzip, das F{\"a}higkeitsprinzip oder das Grandfathering-Prinzip, bei dem die Hauptverursacher nach wie vor am meisten emittieren d{\"u}rfen (dieses Prinzip leitete die bisherigen internationalen Verhandlungen). Das Ziel dieser Arbeit ist, herauszufinden, wie die Klimaprobleme gel{\"o}st werden k{\"o}nnen, so dass f{\"u}r alle Menschen unter allen Umst{\"a}nden die universellen Menschenrechte her- und sichergestellt werden und diese frei und moralisch handeln k{\"o}nnen. Die Schlussfolgerung dieser Arbeit ist, dass Kants Gerechtigkeitsbegriff durch eine Kombination des Subsistenzemissions-Rechts, des Greenhouse-Development-Rights-Principles (GDR-Prinzip) und einer internationalen Staatlichkeit durchgesetzt werden k{\"o}nnte. Durch das Subsistenzemissions-Recht hat jeder Mensch das Recht, so viel Energie zu verbrauchen und damit zusammenh{\"a}ngende Emissionen zu produzieren, dass er ein menschenw{\"u}rdiges Leben f{\"u}hren kann. Das GDR-Prinzip errechnet den Anteil an der weltweiten Gesamtverantwortung zum Klimaschutz eines jeden Landes oder sogar eines jeden Weltb{\"u}rgers, indem es die historischen Emissionen (Klimaschuld) zu der jetzigen finanziellen Kapazit{\"a}t des Landes/ des Individuums (Verantwortungsf{\"a}higkeit) hinzuaddiert. Die Implementierung von internationalen Gremien wird verteidigt, weil es ein globales, grenz{\"u}berschreitendes Problem ist, dessen Effekte und dessen Verantwortung globale Ausmaße haben. Ein schlagendes Argument f{\"u}r fast alle Klimaschutzmaßnahmen ist, dass sie Synergien aufweisen zu anderen gesellschaftlichen Bereichen aufweisen wie z.B. Gesundheit und Armutsbek{\"a}mpfung, in denen auch noch um die Durchsetzung unserer Menschenrechte gerungen wird. Ist dieser L{\"o}sungsansatz nicht v{\"o}llig utopisch? Dieser Vorschlag stellt f{\"u}r die internationale Gemeinschaft eine große Herausforderung dar, w{\"a}re jedoch die einzig gerechte L{\"o}sung unserer Klimaprobleme. Des Weiteren wird an dem Kantischen Handlungsgrundsatz festgehalten, dass das ewige Streben auf ideale Ziele hin, die beste Verwirklichung dieser durch menschliche, fehlbare Wesen ist.}, language = {de} } @phdthesis{Roers2016, author = {Roers, Michael}, title = {Methoden zur Dynamisierung von Klimafolgenanalysen im Elbegebiet}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98844}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 141}, year = {2016}, abstract = {Die Elbe und ihr Einzugsgebiet sind vom Klimawandel betroffen. Um die Wirkkette von projizierten Klimaver{\"a}nderungen auf den Wasserhaushalt und die daraus resultierenden N{\"a}hrstoffeintr{\"a}ge und -frachten f{\"u}r große Einzugsgebiete wie das der Elbe zu analysieren, k{\"o}nnen integrierte Umweltmodellsysteme eingesetzt werden. Fallstudien, die mit diesen Modellsystemen ad hoc durchgef{\"u}hrt werden, repr{\"a}sentieren den Istzustand von Modellentwicklungen und -unsicherheiten und sind damit statisch. Diese Arbeit beschreibt den Einstieg in die Dynamisierung von Klimafolgenanalysen im Elbegebiet. Dies umfasst zum einen eine Plausibilit{\"a}tspr{\"u}fung von Auswirkungsrechnungen, die mit Szenarien des statistischen Szenariengenerators STARS durchgef{\"u}hrt wurden, durch den Vergleich mit den Auswirkungen neuerer Klimaszenarien aus dem ISI-MIP Projekt, die dem letzten Stand der Klimamodellierung entsprechen. Hierf{\"u}r wird ein integriertes Modellsystem mit "eingefrorenem Entwicklungsstand" verwendet. Die Klimawirkungsmodelle bleiben dabei unver{\"a}ndert. Zum anderen wird ein Bestandteil des integrierten Modellsystems - das {\"o}kohydrologische Modell SWIM - zu einer "live"-Version weiterentwickelt. Diese wird durch punktuelle Testung an langj{\"a}hrigen Versuchsreihen eines Lysimeterstandorts sowie an aktuellen Abflussreihen validiert und verbessert. Folgende Forschungsfragen werden bearbeitet: (i) Welche Effekte haben unterschiedliche Klimaszenarien auf den Wasserhaushalt im Elbegebiet und ist eine Neubewertung der Auswirkung des Klimawandels auf den Wasserhaushalt notwendig?, (ii) Was sind die Auswirkungen des Klimawandels auf die N{\"a}hrstoffeintr{\"a}ge und -frachten im Elbegebiet sowie die Wirksamkeit von Maßnahmen zur Reduktion der N{\"a}hrstoffeintr{\"a}ge?, (iii) Ist unter der Nutzung (selbst einer sehr geringen Anzahl) verf{\"u}gbarer tagesaktueller Witterungsdaten in einem stark heterogenen Einzugsgebiet eine valide Ansprache der aktuellen {\"o}kohydrologischen Situation des Elbeeinzugsgebiets m{\"o}glich? Die aktuellen Szenarien best{\"a}tigen die Richtung, jedoch nicht das Ausmaß der Klimafolgen: Die R{\"u}ckg{\"a}nge des mittleren j{\"a}hrlichen Gesamtabflusses und der monatlichen Abfl{\"u}sse an den Pegeln bis Mitte des Jahrhunderts betragen f{\"u}r das STARS-Szenario ca. 30 \%. Die R{\"u}ckg{\"a}nge bei den auf dem ISI-MIP-Szenario basierenden Modellstudien liegen hingegen nur bei ca. 10 \%. Hauptursachen f{\"u}r diese Divergenz sind die Unterschiede in den Niederschlagsprojektionen sowie die Unterschiede in der jahreszeitlichen Verteilung der Erw{\"a}rmung. Im STARS-Szenario gehen methodisch bedingt die Niederschl{\"a}ge zur{\"u}ck und der Winter erw{\"a}rmt sich st{\"a}rker als der Sommer. In dem ISI-MIP-Szenario bleiben die Niederschl{\"a}ge nahezu stabil und die Erw{\"a}rmung im Sommer und Winter unterscheidet sich nur geringf{\"u}gig. Generell nehmen die N{\"a}hrstoffeintr{\"a}ge und -frachten mit den Abfl{\"u}ssen in beiden Szenarien unterproportional ab, wobei die Frachten jeweils st{\"a}rker als die Eintr{\"a}ge zur{\"u}ckgehen. Die konkreten Effekte der Abfluss{\"a}nderungen sind gering und liegen im einstelligen Prozentbereich. Gleiches gilt f{\"u}r die Unterschiede zwischen den Szenarien. Der Effekt von zwei ausgew{\"a}hlten Maßnahmen zur Reduktion der N{\"a}hrstoffeintr{\"a}ge und -frachten unterscheidet sich bei verschiedenen Abflussverh{\"a}ltnissen, repr{\"a}sentiert durch unterschiedliche Klimaszenarien in unterschiedlich feuchter Auspr{\"a}gung, ebenfalls nur geringf{\"u}gig. Die Beantwortung der ersten beiden Forschungsfragen zeigt, dass die Aktualisierung von Klimaszenarien in einem ansonsten "eingefrorenen" Verbund von {\"o}kohydrologischen Daten und Modellen eine wichtige Pr{\"u}foption f{\"u}r die Plausibilisierung von Klimafolgenanalysen darstellt. Sie bildet die methodische Grundlage f{\"u}r die Schlussfolgerung, dass bei der Wassermenge eine Neubewertung der Klimafolgen notwendig ist, w{\"a}hrend dies bei den N{\"a}hrstoffeintr{\"a}gen und -frachten nicht der Fall ist. Die zur Beantwortung der dritten Forschungsfrage mit SWIM-live durchgef{\"u}hrten Validierungsstudien ergeben Diskrepanzen am Lysimeterstandort und bei den Abfl{\"u}ssen aus den Teilgebieten Saale und Spree. Sie lassen sich zum Teil mit der notwendigen Interpolationsweite der Witterungsdaten und dem Einfluss von Wasserbewirtschaftungsmaßnahmen erkl{\"a}ren. Insgesamt zeigen die Validierungsergebnisse, dass schon die Pilotversion von SWIM-live f{\"u}r eine {\"o}kohydrologische Ansprache des Gebietswasserhaushaltes im Elbeeinzugsgebiet genutzt werden kann. SWIM-live erm{\"o}glicht eine unmittelbare Betrachtung und Beurteilung simulierter Daten. Dadurch werden Unsicherheiten bei der Modellierung direkt offengelegt und k{\"o}nnen infolge dessen reduziert werden. Zum einen f{\"u}hrte die Verdichtung der meteorologischen Eingangsdaten durch die Verwendung von nun ca. 700 anstatt 19 Klima- bzw. Niederschlagstationen zu einer Verbesserung der Ergebnisse. Zum anderen wurde SWIM-live beispielhaft f{\"u}r einen Zyklus aus punktueller Modellverbesserung und fl{\"a}chiger {\"U}berpr{\"u}fung der Simulationsergebnisse genutzt. Die einzelnen Teilarbeiten tragen jeweils zur Dynamisierung von Klimafolgenanalysen im Elbegebiet bei. Der Anlass hierf{\"u}r war durch die fehlerhaften methodischen Grundlagen von STARS gegeben. Die Sinnf{\"a}lligkeit der Dynamisierung ist jedoch nicht an diesen konkreten Anlass gebunden, sondern beruht auf der grundlegenden Einsicht, dass Ad-hoc-Szenarienanalysen immer auch pragmatische Vereinfachungen zugrunde liegen, die fortlaufend {\"u}berpr{\"u}ft werden m{\"u}ssen.}, language = {de} } @phdthesis{Olonscheck2016, author = {Olonscheck, Mady}, title = {Climate change impacts on electricity and residential energy demand}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98378}, school = {Universit{\"a}t Potsdam}, pages = {XXIV, 127}, year = {2016}, abstract = {The energy sector is both affected by climate change and a key sector for climate protection measures. Energy security is the backbone of our modern society and guarantees the functioning of most critical infrastructure. Thus, decision makers and energy suppliers of different countries should be familiar with the factors that increase or decrease the susceptibility of their electricity sector to climate change. Susceptibility means socioeconomic and structural characteristics of the electricity sector that affect the demand for and supply of electricity under climate change. Moreover, the relevant stakeholders are supposed to know whether the given national energy and climate targets are feasible and what needs to be done in order to meet these targets. In this regard, a focus should be on the residential building sector as it is one of the largest energy consumers and therefore emitters of anthropogenic CO 2 worldwide. This dissertation addresses the first aspect, namely the susceptibility of the electricity sector, by developing a ranked index which allows for quantitative comparison of the electricity sector susceptibility of 21 European countries based on 14 influencing factors. Such a ranking has not been completed to date. We applied a sensitivity analysis to test the relative effect of each influencing factor on the susceptibility index ranking. We also discuss reasons for the ranking position and thus the susceptibility of selected countries. The second objective, namely the impact of climate change on the energy demand of buildings, is tackled by means of a new model with which the heating and cooling energy demand of residential buildings can be estimated. We exemplarily applied the model to Germany and the Netherlands. It considers projections of future changes in population, climate and the insulation standards of buildings, whereas most of the existing studies only take into account fewer than three different factors that influence the future energy demand of buildings. Furthermore, we developed a comprehensive retrofitting algorithm with which the total residential building stock can be modeled for the first time for each year in the past and future. The study confirms that there is no correlation between the geographical location of a country and its position in the electricity sector susceptibility ranking. Moreover, we found no pronounced pattern of susceptibility influencing factors between countries that ranked higher or lower in the index. We illustrate that Luxembourg, Greece, Slovakia and Italy are the countries with the highest electricity sector susceptibility. The electricity sectors of Norway, the Czech Republic, Portugal and Denmark were found to be least susceptible to climate change. Knowledge about the most important factors for the poor and good ranking positions of these countries is crucial for finding adequate adaptation measures to reduce the susceptibility of the electricity sector. Therefore, these factors are described within this study. We show that the heating energy demand of residential buildings will strongly decrease in both Germany and the Netherlands in the future. The analysis for the Netherlands focused on the regional level and a finer temporal resolution which revealed strong variations in the future heating energy demand changes by province and by month. In the German study, we additionally investigated the future cooling energy demand and could demonstrate that it will only slightly increase up to the middle of this century. Thus, increases in the cooling energy demand are not expected to offset reductions in heating energy demand. The main factor for substantial heating energy demand reductions is the retrofitting of buildings. We are the first to show that the given German and Dutch energy and climate targets in the building sector can only be met if the annual retrofitting rates are substantially increased. The current rate of only about 1 \% of the total building stock per year is insufficient for reaching a nearly zero-energy demand of all residential buildings by the middle of this century. To reach this target, it would need to be at least tripled. To sum up, this thesis emphasizes that country-specific characteristics are decisive for the electricity sector susceptibility of European countries. It also shows for different scenarios how much energy is needed in the future to heat and cool residential buildings. With this information, existing climate mitigation and adaptation measures can be justified or new actions encouraged.}, language = {en} } @phdthesis{Gutsch2016, author = {Gutsch, Martin}, title = {Model-based analysis of climate change impacts on the productivity of oak-pine forests in Brandenburg}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97241}, school = {Universit{\"a}t Potsdam}, pages = {vii, 148}, year = {2016}, abstract = {The relationship between climate and forest productivity is an intensively studied subject in forest science. This Thesis is embedded within the general framework of future forest growth under climate change and its implications for the ongoing forest conversion. My objective is to investigate the future forest productivity at different spatial scales (from a single specific forest stand to aggregated information across Germany) with focus on oak-pine forests in the federal state of Brandenburg. The overarching question is: how are the oak-pine forests affected by climate change described by a variety of climate scenarios. I answer this question by using a model based analysis of tree growth processes and responses to different climate scenarios with emphasis on drought events. In addition, a method is developed which considers climate change uncertainty of forest management planning. As a first 'screening' of climate change impacts on forest productivity, I calculated the change in net primary production on the base of a large set of climate scenarios for different tree species and the total area of Germany. Temperature increases up to 3 K lead to positive effects on the net primary production of all selected tree species. But, in water-limited regions this positive net primary production trend is dependent on the length of drought periods which results in a larger uncertainty regarding future forest productivity. One of the regions with the highest uncertainty of net primary production development is the federal state of Brandenburg. To enhance the understanding and ability of model based analysis of tree growth sensitivity to drought stress two water uptake approaches in pure pine and mixed oak-pine stands are contrasted. The first water uptake approach consists of an empirical function for root water uptake. The second approach is more mechanistic and calculates the differences of soil water potential along a soil-plant-atmosphere continuum. I assumed the total root resistance to vary at low, medium and high total root resistance levels. For validation purposes three data sets on different tree growth relevant time scales are used. Results show that, except the mechanistic water uptake approach with high total root resistance, all transpiration outputs exceeded observed values. On the other hand high transpiration led to a better match of observed soil water content. The strongest correlation between simulated and observed annual tree ring width occurred with the mechanistic water uptake approach and high total root resistance. The findings highlight the importance of severe drought as a main reason for small diameter increment, best supported by the mechanistic water uptake approach with high root resistance. However, if all aspects of the data sets are considered no approach can be judged superior to the other. I conclude that the uncertainty of future productivity of water-limited forest ecosystems under changing environmental conditions is linked to simulated root water uptake. Finally my study aimed at the impacts of climate change combined with management scenarios on an oak-pine forest to evaluate growth, biomass and the amount of harvested timber. The pine and the oak trees are 104 and 9 years old respectively. Three different management scenarios with different thinning intensities and different climate scenarios are used to simulate the performance of management strategies which explicitly account for the risks associated with achieving three predefined objectives (maximum carbon storage, maximum harvested timber, intermediate). I found out that in most cases there is no general management strategy which fits best to different objectives. The analysis of variance in the growth related model outputs showed an increase of climate uncertainty with increasing climate warming. Interestingly, the increase of climate-induced uncertainty is much higher from 2 to 3 K than from 0 to 2 K.}, language = {en} } @phdthesis{Bittermann2015, author = {Bittermann, Klaus}, title = {Semi-empirical sea-level modelling}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93881}, school = {Universit{\"a}t Potsdam}, pages = {v, 88}, year = {2015}, abstract = {Semi-empirical sea-level models (SEMs) exploit physically motivated empirical relationships between global sea level and certain drivers, in the following global mean temperature. This model class evolved as a supplement to process-based models (Rahmstorf (2007)) which were unable to fully represent all relevant processes. They thus failed to capture past sea-level change (Rahmstorf et al. (2012)) and were thought likely to underestimate future sea-level rise. Semi-empirical models were found to be a fast and useful tool for exploring the uncertainties in future sea-level rise, consistently giving significantly higher projections than process-based models. In the following different aspects of semi-empirical sea-level modelling have been studied. Models were first validated using various data sets of global sea level and temperature. SEMs were then used on the glacier contribution to sea level, and to infer past global temperature from sea-level data via inverse modelling. Periods studied encompass the instrumental period, covered by tide gauges (starting 1700 CE (Common Era) in Amsterdam) and satellites (first launched in 1992 CE), the era from 1000 BCE (before CE) to present, and the full length of the Holocene (using proxy data). Accordingly different data, model formulations and implementations have been used. It could be shown in Bittermann et al. (2013) that SEMs correctly predict 20th century sea-level when calibrated with data until 1900 CE. SEMs also turned out to give better predictions than the Intergovernmental Panel on Climate Change (IPCC) 4th assessment report (AR4, IPCC (2007)) models, for the period from 1961-2003 CE. With the first multi-proxy reconstruction of global sea-level as input, estimate of the human-induced component of modern sea-level change and projections of future sea-level rise were calculated (Kopp et al. (2016)). It turned out with 90\% confidence that more than 40 \% of the observed 20th century sea-level rise is indeed anthropogenic. With the new semi-empirical and IPCC (2013) 5th assessment report (AR5) projections the gap between SEM and process-based model projections closes, giving higher credibility to both. Combining all scenarios, from strong mitigation to business as usual, a global sea-level rise of 28-131 cm relative to 2000 CE, is projected with 90\% confidence. The decision for a low carbon pathway could halve the expected global sea-level rise by 2100 CE. Present day temperature and thus sea level are driven by the globally acting greenhouse-gas forcing. Unlike that, the Milankovich forcing, acting on Holocene timescales, results mainly in a northern-hemisphere temperature change. Therefore a semi-empirical model can be driven with northernhemisphere temperatures, which makes it possible to model the main subcomponent of sea-level change over this period. It showed that an additional positive constant rate of the order of the estimated Antarctic sea-level contribution is then required to explain the sea-level evolution over the Holocene. Thus the global sea level, following the climatic optimum, can be interpreted as the sum of a temperature induced sea-level drop and a positive long-term contribution, likely an ongoing response to deglaciation coming from Antarctica.}, language = {en} } @phdthesis{Aich2015, author = {Aich, Valentin}, title = {Floods in the Niger River Basin in the face of global change}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-91577}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 275}, year = {2015}, abstract = {In the last decade, the number and dimensions of catastrophic flooding events in the Niger River Basin (NRB) have markedly increased. Despite the devastating impact of the floods on the population and the mainly agriculturally based economy of the riverine nations, awareness of the hazards in policy and science is still low. The urgency of this topic and the existing research deficits are the motivation for the present dissertation. The thesis is an initial detailed assessment of the increasing flood risk in the NRB. The research strategy is based on four questions regarding (1) features of the change in flood risk, (2) reasons for the change in the flood regime, (3) expected changes of the flood regime given climate and land use changes, and (4) recommendations from previous analysis for reducing the flood risk in the NRB. The question examining the features of change in the flood regime is answered by means of statistical analysis. Trend, correlation, changepoint, and variance analyses show that, in addition to the factors exposure and vulnerability, the hazard itself has also increased significantly in the NRB, in accordance with the decadal climate pattern of West Africa. The northern arid and semi-arid parts of the NRB are those most affected by the changes. As potential reasons for the increase in flood magnitudes, climate and land use changes are attributed by means of a hypothesis-testing framework. Two different approaches, based on either data analysis or simulation, lead to similar results, showing that the influence of climatic changes is generally larger compared to that of land use changes. Only in the dry areas of the NRB is the influence of land use changes comparable to that of climatic alterations. Future changes of the flood regime are evaluated using modelling results. First ensembles of statistically and dynamically downscaled climate models based on different emission scenarios are analyzed. The models agree with a distinct increase in temperature. The precipitation signal, however, is not coherent. The climate scenarios are used to drive an eco-hydrological model. The influence of climatic changes on the flood regime is uncertain due to the unclear precipitation signal. Still, in general, higher flood peaks are expected. In a next step, effects of land use changes are integrated into the model. Different scenarios show that regreening might help to reduce flood peaks. In contrast, an expansion of agriculture might enhance the flood peaks in the NRB. Similarly to the analysis of observed changes in the flood regime, the impacts of climate- and land use changes for the future scenarios are also most severe in the dry areas of the NRB. In order to answer the final research question, the results of the above analysis are integrated into a range of recommendations for science and policy on how to reduce flood risk in the NRB. The main recommendations include a stronger consideration of the enormous natural climate variability in the NRB and a focus on so called "no-regret" adaptation strategies which account for high uncertainty, as well as a stronger consideration of regional differences. Regarding the prevention and mitigation of catastrophic flooding, the most vulnerable and sensitive areas in the basin, the arid and semi-arid Sahelian and Sudano-Sahelian regions, should be prioritized. Eventually, an active, science-based and science-guided flood policy is recommended. The enormous population growth in the NRB in connection with the expected deterioration of environmental and climatic conditions is likely to enhance the region´s vulnerability to flooding. A smart and sustainable flood policy can help mitigate these negative impacts of flooding on the development of riverine societies in West Africa.}, language = {en} } @phdthesis{Pradhan2015, author = {Pradhan, Prajal}, title = {Food demand and supply under global change}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77849}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 141}, year = {2015}, abstract = {Anthropogenic activities have transformed the Earth's environment, not only on local level, but on the planetary-scale causing global change. Besides industrialization, agriculture is a major driver of global change. This change in turn impairs the agriculture sector, reducing crop yields namely due to soil degradation, water scarcity, and climate change. However, this is a more complex issue than it appears. Crop yields can be increased by use of agrochemicals and fertilizers which are mainly produced by fossil energy. This is important to meet the increasing food demand driven by global demographic change, which is further accelerated by changes in regional lifestyles. In this dissertation, we attempt to address this complex problem exploring agricultural potential globally but on a local scale. For this, we considered the influence of lifestyle changes (dietary patterns) as well as technological progress and their effects on climate change, mainly greenhouse gas (GHG) emissions. Furthermore, we examined options for optimizing crop yields in the current cultivated land with the current cropping patterns by closing yield gaps. Using this, we investigated in a five-minute resolution the extent to which food demand can be met locally, and/or by regional and/or global trade. Globally, food consumption habits are shifting towards calorie rich diets. Due to dietary shifts combined with population growth, the global food demand is expected to increase by 60-110\% between 2005 and 2050. Hence, one of the challenges to global sustainability is to meet the growing food demand, while at the same time, reducing agricultural inputs and environmental consequences. In order to address the above problem, we used several freely available datasets and applied multiple interconnected analytical approaches that include artificial neural network, scenario analysis, data aggregation and harmonization, downscaling algorithm, and cross-scale analysis. Globally, we identified sixteen dietary patterns between 1961 and 2007 with food intakes ranging from 1,870 to 3,400 kcal/cap/day. These dietary patterns also reflected changing dietary habits to meat rich diets worldwide. Due to the large share of animal products, very high calorie diets that are common in the developed world, exhibit high total per capita emissions of 3.7-6.1 kg CO2eq./day. This is higher than total per capita emissions of 1.4-4.5 kg CO2eq./day associated with low and moderate calorie diets that are common in developing countries. Currently, 40\% of the global crop calories are fed to livestock and the feed calorie use is four times the produced animal calories. However, these values vary from less than 1 kcal to greater 10 kcal around the world. On the local and national scale, we found that the local and national food production could meet demand of 1.9 and 4.4 billion people in 2000, respectively. However, 1 billion people from Asia and Africa require intercontinental agricultural trade to meet their food demand. Nevertheless, these regions can become food self-sufficient by closing yield gaps that require location specific inputs and agricultural management strategies. Such strategies include: fertilizers, pesticides, soil and land improvement, management targeted on mitigating climate induced yield variability, and improving market accessibility. However, closing yield gaps in particular requires global N-fertilizer application to increase by 45-73\%, P2O5 by 22-46\%, and K2O by 2-3 times compare to 2010. Considering population growth, we found that the global agricultural GHG emissions will approach 7 Gt CO2eq./yr by 2050, while the global livestock feed demand will remain similar to 2000. This changes tremendously when diet shifts are also taken into account, resulting in GHG emissions of 20 Gt CO2eq./yr and an increase of 1.3 times in the crop-based feed demand between 2000 and 2050. However, when population growth, diet shifts, and technological progress by 2050 were considered, GHG emissions can be reduced to 14 Gt CO2eq./yr and the feed demand to nearly 1.8 times compare to that in 2000. Additionally, our findings shows that based on the progress made in closing yield gaps, the number of people depending on international trade can vary between 1.5 and 6 billion by 2050. In medium term, this requires additional fossil energy. Furthermore, climate change, affecting crop yields, will increase the need for international agricultural trade by 4\% to 16\%. In summary, three general conclusions are drawn from this dissertation. First, changing dietary patterns will significantly increase crop demand, agricultural GHG emissions, and international food trade in the future when compared to population growth only. Second, such increments can be reduced by technology transfer and technological progress that will enhance crop yields, decrease agricultural emission intensities, and increase livestock feed conversion efficiencies. Moreover, international trade dependency can be lowered by consuming local and regional food products, by producing diverse types of food, and by closing yield gaps. Third, location specific inputs and management options are required to close yield gaps. Sustainability of such inputs and management largely depends on which options are chosen and how they are implemented. However, while every cultivated land may not need to attain its potential yields to enable food security, closing yield gaps only may not be enough to achieve food self-sufficiency in some regions. Hence, a combination of sustainable implementations of agricultural intensification, expansion, and trade as well as shifting dietary habits towards a lower share of animal products is required to feed the growing population.}, language = {en} } @phdthesis{Strauss2014, author = {Strauß, Jens}, title = {Organic carbon in ice-rich permafrost}, doi = {10.25932/publishup-7523}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-75236}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 107, 102}, year = {2014}, abstract = {Permafrost, defined as ground that is frozen for at least two consecutive years, is a distinct feature of the terrestrial unglaciated Arctic. It covers approximately one quarter of the land area of the Northern Hemisphere (23,000,000 km²). Arctic landscapes, especially those underlain by permafrost, are threatened by climate warming and may degrade in different ways, including active layer deepening, thermal erosion, and development of rapid thaw features. In Siberian and Alaskan late Pleistocene ice-rich Yedoma permafrost, rapid and deep thaw processes (called thermokarst) can mobilize deep organic carbon (below 3 m depth) by surface subsidence due to loss of ground ice. Increased permafrost thaw could cause a feedback loop of global significance if its stored frozen organic carbon is reintroduced into the active carbon cycle as greenhouse gases, which accelerate warming and inducing more permafrost thaw and carbon release. To assess this concern, the major objective of the thesis was to enhance the understanding of the origin of Yedoma as well as to assess the associated organic carbon pool size and carbon quality (concerning degradability). The key research questions were: - How did Yedoma deposits accumulate? - How much organic carbon is stored in the Yedoma region? - What is the susceptibility of the Yedoma region's carbon for future decomposition? To address these three research questions, an interdisciplinary approach, including detailed field studies and sampling in Siberia and Alaska as well as methods of sedimentology, organic biogeochemistry, remote sensing, statistical analyses, and computational modeling were applied. To provide a panarctic context, this thesis additionally includes results both from a newly compiled northern circumpolar carbon database and from a model assessment of carbon fluxes in a warming Arctic. The Yedoma samples show a homogeneous grain-size composition. All samples were poorly sorted with a multi-modal grain-size distribution, indicating various (re-) transport processes. This contradicts the popular pure loess deposition hypothesis for the origin of Yedoma permafrost. The absence of large-scale grinding processes via glaciers and ice sheets in northeast Siberian lowlands, processes which are necessary to create loess as material source, suggests the polygenetic origin of Yedoma deposits. Based on the largest available data set of the key parameters, including organic carbon content, bulk density, ground ice content, and deposit volume (thickness and coverage) from Siberian and Alaskan study sites, this thesis further shows that deep frozen organic carbon in the Yedoma region consists of two distinct major reservoirs, Yedoma deposits and thermokarst deposits (formed in thaw-lake basins). Yedoma deposits contain ~80 Gt and thermokarst deposits ~130 Gt organic carbon, or a total of ~210 Gt. Depending on the approach used for calculating uncertainty, the range for the total Yedoma region carbon store is ±75 \% and ±20 \% for conservative single and multiple bootstrapping calculations, respectively. Despite the fact that these findings reduce the Yedoma region carbon pool by nearly a factor of two compared to previous estimates, this frozen organic carbon is still capable of inducing a permafrost carbon feedback to climate warming. The complete northern circumpolar permafrost region contains between 1100 and 1500 Gt organic carbon, of which ~60 \% is perennially frozen and decoupled from the short-term carbon cycle. When thawed and reintroduced into the active carbon cycle, the organic matter qualities become relevant. Furthermore, results from investigations into Yedoma and thermokarst organic matter quality studies showed that Yedoma and thermokarst organic matter exhibit no depth-dependent quality trend. This is evidence that after freezing, the ancient organic matter is preserved in a state of constant quality. The applied alkane and fatty-acid-based biomarker proxies including the carbon-preference and the higher-land-plant-fatty-acid indices show a broad range of organic matter quality and thus no significantly different qualities of the organic matter stored in thermokarst deposits compared to Yedoma deposits. This lack of quality differences shows that the organic matter biodegradability depends on different decomposition trajectories and the previous decomposition/incorporation history. Finally, the fate of the organic matter has been assessed by implementing deep carbon pools and thermokarst processes in a permafrost carbon model. Under various warming scenarios for the northern circumpolar permafrost region, model results show a carbon release from permafrost regions of up to ~140 Gt and ~310 Gt by the years 2100 and 2300, respectively. The additional warming caused by the carbon release from newly-thawed permafrost contributes 0.03 to 0.14°C by the year 2100. The model simulations predict that a further increase by the 23rd century will add 0.4°C to global mean surface air temperatures. In conclusion, Yedoma deposit formation during the late Pleistocene was dominated by water-related (alluvial/fluvial/lacustrine) as well as aeolian processes under periglacial conditions. The circumarctic permafrost region, including the Yedoma region, contains a substantial amount of currently frozen organic carbon. The carbon of the Yedoma region is well-preserved and therefore available for decomposition after thaw. A missing quality-depth trend shows that permafrost preserves the quality of ancient organic matter. When the organic matter is mobilized by deep degradation processes, the northern permafrost region may add up to 0.4°C to the global warming by the year 2300.}, language = {en} } @phdthesis{Jaiser2013, author = {Jaiser, Ralf}, title = {Dreidimensionale Diagnostik der großskaligen Zirkulation der Tropo- und Stratosph{\"a}re}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69064}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {In dieser Arbeit werden Konzepte f{\"u}r die Diagnostik der großskaligen Zirkulation in der Troposph{\"a}re und Stratosph{\"a}re entwickelt. Der Fokus liegt dabei auf dem Energiehaushalt, auf der Wellenausbreitung und auf der Interaktion der atmosph{\"a}rischen Wellen mit dem Grundstrom. Die Konzepte werden hergeleitet, wobei eine neue Form des lokalen Eliassen-Palm-Flusses unter Einbeziehung der Feuchte eingef{\"u}hrt wird. Angewendet wird die Diagnostik dann auf den Reanalysedatensatz ERA-Interim und einen durch beobachtete Meerestemperatur- und Eisdaten angetriebenen Lauf des ECHAM6 Atmosph{\"a}renmodells. Die diagnostischen Werkzeuge zur Analyse der großskaligen Zirkulation sind einerseits n{\"u}tzlich, um das Verst{\"a}ndnis der Dynamik des Klimasystems weiter zu f{\"o}rdern. Andererseits kann das gewonnene Verst{\"a}ndnis des Zusammenhangs von Energiequellen und -senken sowie deren Verkn{\"u}pfung mit synoptischen und planetaren Wellensystemen und dem resultierenden Antrieb des Grundstroms auch verwendet werden, um Klimamodelle auf die korrekte Wiedergabe dieser Beobachtungen zu pr{\"u}fen. Hier zeigt sich, dass die Abweichungen im untersuchten ECHAM6-Modelllauf bez{\"u}glich des Energiehaushalts klein sind, jedoch teils starke Abweichungen bez{\"u}glich der Ausbreitung von atmosph{\"a}rischen Wellen existieren. Planetare Wellen zeigen allgemein zu große Intensit{\"a}ten in den Eliassen-Palm-Fl{\"u}ssen, w{\"a}hrend innerhalb der Strahlstr{\"o}me der oberen Troposph{\"a}re der Antrieb des Grundstroms durch synoptische Wellen verf{\"a}lscht ist, da deren vertikale Ausbreitung gegen{\"u}ber den Beobachtungen verschoben ist. Untersucht wird auch der Einfluss von arktischen Meereis{\"a}nderungen ausgehend vom Bedeckungsminimum im August/September bis in den Winter. Es werden starke positive Temperaturanomalien festgestellt, welche an der Oberfl{\"a}che am gr{\"o}ßten sind. Diese f{\"u}hren vor allem im Herbst zur Intensivierung von synoptischen Systemen in den arktischen Breiten, da die Stabilit{\"a}t der troposph{\"a}rischen Schichtung verringert ist. Im darauffolgenden Winter stellen sich barotrope bis in die Stratosph{\"a}re reichende {\"A}nderungen der großskaligen Zirkulation ein, welche auf Meereis{\"a}nderungen zur{\"u}ckzuf{\"u}hren sind. Der meridionale Druckgradient sinkt und f{\"u}hrt so zu einem Muster {\"a}hnlich einer negativen Phase der arktischen Oszillation in der Troposph{\"a}re und einem geschw{\"a}chten Polarwirbel in der Stratosph{\"a}re. Diese Zusammenh{\"a}nge werden ebenfalls in einem ECHAM6-Modelllauf untersucht, wobei vor allem der Erw{\"a}rmungstrend in der Arktis zu gering ist. Die großskaligen Ver{\"a}nderungen im Winter k{\"o}nnen zum Teil auch im Modelllauf festgestellt werden, jedoch zeigen sich insbesondere in der Stratosph{\"a}re Abweichungen f{\"u}r die Periode mit der geringsten Eisausdehnung. Die vertikale Ausbreitung planetarer Wellen von der Troposph{\"a}re in die Stratosph{\"a}re ist in ECHAM6 mit sehr großen Abweichungen wiedergegeben. Somit stellt die Wellenausbreitung insgesamt den gr{\"o}ßten in dieser Arbeit festgestellten Mangel in ECHAM6 dar.}, language = {de} } @phdthesis{Bischoff2013, author = {Bischoff, Juliane}, title = {Microbial communities and their response to Pleistocene and Holocene climate variabilities in the Russian Arctic}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68895}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The Arctic is considered as a focal region in the ongoing climate change debate. The currently observed and predicted climate warming is particularly pronounced in the high northern latitudes. Rising temperatures in the Arctic cause progressive deepening and duration of permafrost thawing during the arctic summer, creating an 'active layer' with high bioavailability of nutrients and labile carbon for microbial consumption. The microbial mineralization of permafrost carbon creates large amounts of greenhouse gases, including carbon dioxide and methane, which can be released to the atmosphere, creating a positive feedback to global warming. However, to date, the microbial communities that drive the overall carbon cycle and specifically methane production in the Arctic are poorly constrained. To assess how these microbial communities will respond to the predicted climate changes, such as an increase in atmospheric and soil temperatures causing increased bioavailability of organic carbon, it is necessary to investigate the current status of this environment, but also how these microbial communities reacted to climate changes in the past. This PhD thesis investigated three records from two different study sites in the Russian Arctic, including permafrost, lake shore and lake deposits from Siberia and Chukotka. A combined stratigraphic approach of microbial and molecular organic geochemical techniques were used to identify and quantify characteristic microbial gene and lipid biomarkers. Based on this data it was possible to characterize and identify the climate response of microbial communities involved in past carbon cycling during the Middle Pleistocene and the Late Pleistocene to Holocene. It is shown that previous warmer periods were associated with an expansion of bacterial and archaeal communities throughout the Russian Arctic, similar to present day conditions. Different from this situation, past glacial and stadial periods experienced a substantial decrease in the abundance of Bacteria and Archaea. This trend can also be confirmed for the community of methanogenic archaea that were highly abundant and diverse during warm and particularly wet conditions. For the terrestrial permafrost, a direct effect of the temperature on the microbial communities is likely. In contrast, it is suggested that the temperature rise in scope of the glacial-interglacial climate variations led to an increase of the primary production in the Arctic lake setting, as can be seen in the corresponding biogenic silica distribution. The availability of this algae-derived carbon is suggested to be a driver for the observed pattern in the microbial abundance. This work demonstrates the effect of climate changes on the community composition of methanogenic archae. Methanosarcina-related species were abundant throughout the Russian Arctic and were able to adapt to changing environmental conditions. In contrast, members of Methanocellales and Methanomicrobiales were not able to adapt to past climate changes. This PhD thesis provides first evidence that past climatic warming led to an increased abundance of microbial communities in the Arctic, closely linked to the cycling of carbon and methane production. With the predicted climate warming, it may, therefore, be anticipated that extensive amounts of microbial communities will develop. Increasing temperatures in the Arctic will affect the temperature sensitive parts of the current microbiological communities, possibly leading to a suppression of cold adapted species and the prevalence of methanogenic archaea that tolerate or adapt to increasing temperatures. These changes in the composition of methanogenic archaea will likely increase the methane production potential of high latitude terrestrial regions, changing the Arctic from a carbon sink to a source.}, language = {en} } @phdthesis{Holsten2013, author = {Holsten, Anne}, title = {Climate change vulnerability assessments in the regional context}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66836}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Adapting sectors to new conditions under climate change requires an understanding of regional vulnerabilities. Conceptually, vulnerability is defined as a function of sensitivity and exposure, which determine climate impacts, and adaptive capacity of a system. Vulnerability assessments for quantifying these components have become a key tool within the climate change field. However, there is a disagreement on how to make the concept operational in studies from a scientific perspective. This conflict leads to many still unsolved challenges, especially regarding the quantification and aggregation of the components and their suitable level of complexity. This thesis therefore aims at advancing the scientific foundation of such studies by translating the concept of vulnerability into a systematic assessment structure. This includes all components and implies that for each considered impact (e.g. flash floods) a clear sensitive entity is defined (e.g. settlements) and related to a direction of change for a specific climatic stimulus (e.g. increasing impact due to increasing days with heavy precipitation). Regarding the challenging aggregation procedure, two alternative methods allowing a cross-sectoral overview are introduced and their advantages and disadvantages discussed. This assessment structure is subsequently exemplified for municipalities of the German state North Rhine-Westphalia via an indicator-based deductive approach using information from literature. It can be transferred also to other regions. As for many relevant sectors, suitable indicators to express the vulnerability components are lacking, new quantification methods are developed and applied in this thesis, for example for the forestry and health sector. A lack of empirical data on relevant thresholds is evident, for example which climatic changes would cause significant impacts. Consequently, the multi-sectoral study could only provide relative measures for each municipality, in relation to the region. To fill this gap, an exemplary sectoral study was carried out on windthrow impacts in forests to provide an absolute quantification of the present and future impact. This is achieved by formulating an empirical relation between the forest characteristics and damage based on data from a past storm event. The resulting measure indicating the sensitivity is then combined with wind conditions. Multi-sectoral vulnerability assessments require considerable resources, which often hinders the implementation. Thus, in a next step, the potential for reducing the complexity is explored. To predict forest fire occurrence, numerous meteorological indices are available, spanning over a range of complexity. Comparing their performance, the single variable relative humidity outperforms complex indicators for most German states in explaining the monthly fire pattern. This is the case albeit it is itself an input factor in most indices. Thus, this meteorological factor alone is well suited to evaluate forest fire danger in many Germany regions and allows a resource-efficient assessment. Similarly, the complexity of methods is assessed regarding the application of the ecohydrological model SWIM to the German region of Brandenburg. The inter-annual soil moisture levels simulated by this model can only poorly be represented by simpler statistical approach using the same input data. However, on a decadal time horizon, the statistical approach shows a good performance and a strong dominance of the soil characteristic field capacity. This points to a possibility to reduce the input factors for predicting long-term averages, but the results are restricted by a lack of empirical data on soil water for validation. The presented assessments of vulnerability and its components have shown that they are still a challenging scientific undertaking. Following the applied terminology, many problems arise when implementing it for regional studies. Advances in addressing shortcomings of previous studies have been made by constructing a new systematic structure for characterizing and aggregating vulnerability components. For this, multiple approaches were presented, but they have specific advantages and disadvantages, which should also be carefully considered in future studies. There is a potential to simplify some methods, but more systematic assessments on this are needed. Overall, this thesis strengthened the use of vulnerability assessments as a tool to support adaptation by enhancing their scientific basis.}, language = {en} } @phdthesis{Lohmann2012, author = {Lohmann, Dirk}, title = {Sustainable management of semi-arid African savannas under environmental and political change}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65069}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Drylands cover about 40\% of the earth's land surface and provide the basis for the livelihoods of 38\% of the global human population. Worldwide, these ecosystems are prone to heavy degradation. Increasing levels of dryland degradation result a strong decline of ecosystem services. In addition, in highly variable semi-arid environments changing future environmental conditions will potentially have severe consequences for productivity and ecosystem dynamics. Hence, global efforts have to be made to understand the particular causes and consequences of dryland degradation and to promote sustainable management options for semi-arid and arid ecosystems in a changing world. Here I particularly address the problem of semi-arid savanna degradation, which mostly occurs in form of woody plant encroachment. At this, I aim at finding viable sustainable management strategies and improving the general understanding of semi-arid savanna vegetation dynamics under conditions of extensive livestock production. Moreover, the influence of external forces, i.e. environmental change and land reform, on the use of savanna vegetation and on the ecosystem response to this land use is assessed. Based on this I identify conditions and strategies that facilitate a sustainable use of semi-arid savanna rangelands in a changing world. I extended an eco-hydrological model to simulate rangeland vegetation dynamics for a typical semi-arid savanna in eastern Namibia. In particular, I identified the response of semi-arid savanna vegetation to different land use strategies (including fire management) also with regard to different predicted precipitation, temperature and CO2 regimes. Not only environmental but also economic and political constraints like e.g. land reform programmes are shaping rangeland management strategies. Hence, I aimed at understanding the effects of the ongoing process of land reform in southern Africa on land use and the semi-arid savanna vegetation. Therefore, I developed and implemented an agent-based ecological-economic modelling tool for interactive role plays with land users. This tool was applied in an interdisciplinary empirical study to identify general patterns of management decisions and the between-farm cooperation of land reform beneficiaries in eastern Namibia. The eco-hydrological simulations revealed that the future dynamics of semi-arid savanna vegetation strongly depend on the respective climate change scenario. In particular, I found that the capacity of the system to sustain domestic livestock production will strongly depend on changes in the amount and temporal distribution of precipitation. In addition, my simulations revealed that shrub encroachment will become less likely under future climatic conditions although positive effects of CO2 on woody plant growth and transpiration have been considered. While earlier studies predicted a further increase in shrub encroachment due to increased levels of atmospheric CO2, my contrary finding is based on the negative impacts of temperature increase on the drought sensitive seedling germination and establishment of woody plant species. Further simulation experiments revealed that prescribed fires are an efficient tool for semi-arid rangeland management, since they suppress woody plant seedling establishment. The strategies tested have increased the long term productivity of the savanna in terms of livestock production and decreased the risk for shrub encroachment (i.e. savanna degradation). This finding refutes the views promoted by existing studies, which state that fires are of minor importance for the vegetation dynamics of semi-arid and arid savannas. Again, the difference in predictions is related to the bottleneck at the seedling establishment stage of woody plants, which has not been sufficiently considered in earlier studies. The ecological-economic role plays with Namibian land reform beneficiaries showed that the farmers made their decisions with regard to herd size adjustments according to economic but not according to environmental variables. Hence, they do not manage opportunistically by tracking grass biomass availability but rather apply conservative management strategies with low stocking rates. This implies that under the given circumstances the management of these farmers will not per se cause (or further worsen) the problem of savanna degradation and shrub encroachment due to overgrazing. However, as my results indicate that this management strategy is rather based on high financial pressure, it is not an indicator for successful rangeland management. Rather, farmers struggle hard to make any positive revenue from their farming business and the success of the Namibian land reform is currently disputable. The role-plays also revealed that cooperation between farmers is difficult even though obligatory due to the often small farm sizes. I thus propose that cooperation needs to be facilitated to improve the success of land reform beneficiaries.}, language = {en} } @phdthesis{Waha2012, author = {Waha, Katharina}, title = {Climate change impacts on agricultural vegetation in sub-Saharan Africa}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64717}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Agriculture is one of the most important human activities providing food and more agricultural goods for seven billion people around the world and is of special importance in sub-Saharan Africa. The majority of people depends on the agricultural sector for their livelihoods and will suffer from negative climate change impacts on agriculture until the middle and end of the 21st century, even more if weak governments, economic crises or violent conflicts endanger the countries' food security. The impact of temperature increases and changing precipitation patterns on agricultural vegetation motivated this thesis in the first place. Analyzing the potentials of reducing negative climate change impacts by adapting crop management to changing climate is a second objective of the thesis. As a precondition for simulating climate change impacts on agricultural crops with a global crop model first the timing of sowing in the tropics was improved and validated as this is an important factor determining the length and timing of the crops´ development phases, the occurrence of water stress and final crop yield. Crop yields are projected to decline in most regions which is evident from the results of this thesis, but the uncertainties that exist in climate projections and in the efficiency of adaptation options because of political, economical or institutional obstacles have to be considered. The effect of temperature increases and changing precipitation patterns on crop yields can be analyzed separately and varies in space across the continent. Southern Africa is clearly the region most susceptible to climate change, especially to precipitation changes. The Sahel north of 13° N and parts of Eastern Africa with short growing seasons below 120 days and limited wet season precipitation of less than 500 mm are also vulnerable to precipitation changes while in most other part of East and Central Africa, in contrast, the effect of temperature increase on crops overbalances the precipitation effect and is most pronounced in a band stretching from Angola to Ethiopia in the 2060s. The results of this thesis confirm the findings from previous studies on the magnitude of climate change impact on crops in sub-Saharan Africa but beyond that helps to understand the drivers of these changes and the potential of certain management strategies for adaptation in more detail. Crop yield changes depend on the initial growing conditions, on the magnitude of climate change, and on the crop, cropping system and adaptive capacity of African farmers which is only now evident from this comprehensive study for sub-Saharan Africa. Furthermore this study improves the representation of tropical cropping systems in a global crop model and considers the major food crops cultivated in sub-Saharan Africa and climate change impacts throughout the continent.}, language = {en} } @phdthesis{Wulf2011, author = {Wulf, Hendrik}, title = {Seasonal precipitation, river discharge, and sediment flux in the western Himalaya}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57905}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Rainfall, snow-, and glacial melt throughout the Himalaya control river discharge, which is vital for maintaining agriculture, drinking water and hydropower generation. However, the spatiotemporal contribution of these discharge components to Himalayan rivers is not well understood, mainly because of the scarcity of ground-based observations. Consequently, there is also little known about the triggers and sources of peak sediment flux events, which account for extensive hydropower reservoir filling and turbine abrasion. We therefore lack basic information on the distribution of water resources and controls of erosion processes. In this thesis, I employ various methods to assess and quantify general characteristics of and links between precipitation, river discharge, and sediment flux in the Sutlej Valley. First, I analyze daily precipitation data (1998-2007) from 80 weather stations in the western Himalaya, to decipher the distribution of rain- and snowfall. Rainfall magnitude frequency analyses indicate that 40\% of the summer rainfall budget is attributed to monsoonal rainstorms, which show higher variability in the orogenic interior than in frontal regions. Combined analysis of rainstorms and sediment flux data of a major Sutlej River tributary indicate that monsoonal rainfall has a first order control on erosion processes in the orogenic interior, despite the dominance of snowfall in this region. Second, I examine the contribution of rainfall, snow and glacial melt to river discharge in the Sutlej Valley (s55,000 km2), based on a distributed hydrological model, which covers the period 2000-2008. To achieve high spatial and daily resolution despite limited ground-based observations the hydrological model is forced by daily remote sensing data, which I adjusted and calibrated with ground station data. The calibration shows that the Tropical Rainfall Measuring Mission (TRMM) 3B42 rainfall product systematically overestimates rainfall in semi-arid and arid regions, increasing with aridity. The model results indicate that snowmelt-derived discharge (74\%) is most important during the pre-monsoon season (April to June) whereas rainfall (56\%) and glacial melt (17\%) dominate the monsoon season (July-September). Therefore, climate change most likely causes a reduction in river discharge during the pre-monsoon season, which especially affects the orogenic interior. Third, I investigate the controls on suspended sediment flux in different parts of the Sutlej catchments, based on daily gauging data from the past decade. In conjunction with meteorological data, earthquake records, and rock strength measurements I find that rainstorms are the most frequent trigger of high-discharge events with peaks in suspended sediment concentrations (SSC) that account for the bulk of the suspended sediment flux. The suspended sediment flux increases downstream, mainly due to increases in runoff. Pronounced erosion along the Himalayan Front occurs throughout the monsoon season, whereas efficient erosion of the orogenic interior is confined to single extreme events. The results of this thesis highlight the importance of snow and glacially derived melt waters in the western Himalaya, where extensive regions receive only limited amounts of monsoonal rainfall. These regions are therefore particularly susceptible to global warming with major implications on the hydrological cycle. However, the sediment discharge data show that infrequent monsoonal rainstorms that pass the orographic barrier of the Higher Himalaya are still the primary trigger of the highest-impact erosion events, despite being subordinate to snow and glacially-derived discharge. These findings may help to predict peak sediment flux events and could underpin the strategic development of preventative measures for hydropower infrastructures.}, language = {en} } @phdthesis{Zurell2011, author = {Zurell, Damaris}, title = {Integrating dynamic and statistical modelling approaches in order to improve predictions for scenarios of environmental change}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-56845}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Species respond to environmental change by dynamically adjusting their geographical ranges. Robust predictions of these changes are prerequisites to inform dynamic and sustainable conservation strategies. Correlative species distribution models (SDMs) relate species' occurrence records to prevailing environmental factors to describe the environmental niche. They have been widely applied in global change context as they have comparably low data requirements and allow for rapid assessments of potential future species' distributions. However, due to their static nature, transient responses to environmental change are essentially ignored in SDMs. Furthermore, neither dispersal nor demographic processes and biotic interactions are explicitly incorporated. Therefore, it has often been suggested to link statistical and mechanistic modelling approaches in order to make more realistic predictions of species' distributions for scenarios of environmental change. In this thesis, I present two different ways of such linkage. (i) Mechanistic modelling can act as virtual playground for testing statistical models and allows extensive exploration of specific questions. I promote this 'virtual ecologist' approach as a powerful evaluation framework for testing sampling protocols, analyses and modelling tools. Also, I employ such an approach to systematically assess the effects of transient dynamics and ecological properties and processes on the prediction accuracy of SDMs for climate change projections. That way, relevant mechanisms are identified that shape the species' response to altered environmental conditions and which should hence be considered when trying to project species' distribution through time. (ii) I supplement SDM projections of potential future habitat for black grouse in Switzerland with an individual-based population model. By explicitly considering complex interactions between habitat availability and demographic processes, this allows for a more direct assessment of expected population response to environmental change and associated extinction risks. However, predictions were highly variable across simulations emphasising the need for principal evaluation tools like sensitivity analysis to assess uncertainty and robustness in dynamic range predictions. Furthermore, I identify data coverage of the environmental niche as a likely cause for contrasted range predictions between SDM algorithms. SDMs may fail to make reliable predictions for truncated and edge niches, meaning that portions of the niche are not represented in the data or niche edges coincide with data limits. Overall, my thesis contributes to an improved understanding of uncertainty factors in predictions of range dynamics and presents ways how to deal with these. Finally I provide preliminary guidelines for predictive modelling of dynamic species' response to environmental change, identify key challenges for future research and discuss emerging developments.}, language = {en} } @misc{Hallermeier2011, type = {Master Thesis}, author = {Hallermeier, Larissa Diane}, title = {K{\"u}sten und Klimawandel in den Augen von Touristen : eine Wahrnehmungsanalyse an der deutschen Ostsee}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53855}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Aufgrund seiner wirtschaftlichen Bedeutung spielt der Tourismus in Mecklenburg-Vorpommern eine große Rolle. Insbesondere die K{\"u}stengebiete sind beliebte Reiseziele. In den letzten Jahren konnte ein kontinuierlicher Anstieg der Ank{\"u}nfte und {\"U}bernachtungen verzeichnet werden. Neben anderen Faktoren werden die regionalen Auswirkungen des Klimawandels jedoch in Zukunft eine Herausforderung f{\"u}r den Tourismussektor darstellen. Die globale Erw{\"a}rmung wird f{\"u}r den Strand- und Badetourismus sowohl negative, als auch positive Folgen haben, auf die reagiert werden muss. Neben vorbeugenden Klimaschutzmaßnahmen werden k{\"u}nftig auch Anpassungsstrategien entwickelt werden m{\"u}ssen, die den zu erwartenden Ver{\"a}nderungen Rechnung tragen. Doch zu welchen tourismusrelevanten Ver{\"a}nderungen wird es {\"u}berhaupt kommen und was geschieht bereits aktuell? Sind die Folgen des Klimawandels durch Touristen schon jetzt wahrnehmbar? Wie reagieren die Urlauber auf eventuelle Ver{\"a}nderungen? Diese und andere Fragen soll die vorliegende Arbeit, die innerhalb des RAdOST-Vorhabens (Regionale Anpassungsstrategien f{\"u}r die deutsche Ostseek{\"u}ste) angesiedelt ist, beantworten. Dazu wurde zum einen eine Literaturrecherche zu tourismusrelevanten Klimawandelfolgen an der deutschen Ostseek{\"u}ste durchgef{\"u}hrt. Zum anderen erfolgte in den Sommermonaten 2010 eine Befragung der Strandg{\"a}ste in Markgrafenheide, Warnem{\"u}nde und Nienhagen an der mecklenburgischen Ostseek{\"u}ste. Im Mittelpunkt der Umfrage stand die Wahrnehmung von Erscheinungen (z.B. viele Quallen oder warmes Ostseewasser) sowie kurz- oder langfristigen Ver{\"a}nderungen an der K{\"u}ste (z.B. schmalere Str{\"a}nde, vermehrter Strandanwurf) durch die Urlauber. Außerdem wurden die Einstellung und der Informationsgrad der G{\"a}ste zum Thema Klimawandel an der Ostseek{\"u}ste analysiert. Ziel war es, aus den Umfrageergebnissen Handlungsempfehlungen f{\"u}r das lokale Strandmanagement hinsichtlich k{\"u}nftiger Anpassungsstrategien abzuleiten. Die Literaturrecherche zeigte, dass in einigen Bereichen schon jetzt Ver{\"a}nderungen (z.B. der Luft- und Wassertemperatur oder des Meeresspiegels) nachweisbar sind und laut verschiedener Modellprojektionen von weiteren Ver{\"a}nderungen ausgegangen werden kann. Wie die Umfrage deutlich machte, sind die Ver{\"a}nderungen momentan durch Touristen jedoch kaum oder gar nicht wahrnehmbar. Dementsprechend gering ist auch ihre Reaktion auf die einzelnen Ph{\"a}nomene. Generell ist die Wahrnehmung der Urlauber sehr subjektiv und selektiv. Manche Gegebenheiten wie beispielsweise existierende K{\"u}stenschutzmaßnahmen werden von einem großen Teil der Touristen gar nicht wahrgenommen. Hinsichtlich anderer Erscheinungen wie Strandanwurf und Quallen sind viele Besucher wiederum sehr sensibel. Es zeigte sich außerdem, dass es f{\"u}r die meisten Urlauber schwierig ist, zu beurteilen, ob bestimmte Gegebenheiten am Strand und an der K{\"u}ste mit der globalen Erw{\"a}rmung in Verbindung stehen oder nicht. Es besteht eine große Unsicherheit zu diesem Thema und oft wird der Klimawandel als Ursache f{\"u}r Erscheinungen genannt, auch wenn der kausale Zusammenhang wissenschaftlich nicht nachzuweisen ist. Es zeigte sich, dass die Urlauber sehr wenig {\"u}ber die regionalen Auswirkungen des Klimawandels informiert sind, sich aber Informationen w{\"u}nschen. Folglich sollte zun{\"a}chst die Aufkl{\"a}rung und Information der Urlauber {\"u}ber die Folgen der Ver{\"a}nderung des Klimas im Vordergrund stehen. Denn manche Aspekte, wie der Verlust von Strandabschnitten durch Erosion oder eine eventuelle Zunahme von Blaualgen in der Sommersaison, k{\"o}nnen nicht g{\"a}nzlich vermieden werden. Durch gezielte Aufkl{\"a}rung k{\"o}nnte jedoch beispielsweise eine Akzeptanz f{\"u}r naturnahe Str{\"a}nde oder f{\"u}r den R{\"u}ckzug aus einzelnen Gebieten geschaffen werden. Dar{\"u}ber hinaus sollte die zu erwartende Saisonverl{\"a}ngerung systematisch genutzt werden, um sowohl die K{\"u}ste, als auch das Hinterland durch gezielte Angebote f{\"u}r Touristen attraktiv zu machen. Auf diese Weise k{\"o}nnte eine Entzerrung der Hauptsaison und eine bessere Auslastung der Beherbergungsbetriebe sowie der touristischen Infrastruktur erreicht werden.}, language = {de} } @phdthesis{Natkhin2010, author = {Natkhin, Marco}, title = {Modellgest{\"u}tzte Analyse der Einfl{\"u}sse von Ver{\"a}nderungen der Waldwirtschaft und des Klimas auf den Wasserhaushalt grundwasserabh{\"a}ngiger Landschaftselemente}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50627}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {In den letzten drei Jahrzehnten wurden in einigen Seen und Feuchtgebieten in bewaldeten Einzugsgebieten Nordost-Brandenburgs sinkende Wasserst{\"a}nde beobachtet. In diesen Gebieten bestimmt die Grundwasserneubildung im Einzugsgebiet maßgeblich das Wasserdargebot der Seen und Feuchtgebiete, die deshalb hier als grundwasserabh{\"a}ngige Landschaftselemente bezeichnet werden. Somit weisen die sinkenden Wasserst{\"a}nde auf einen R{\"u}ckgang der wegen des geringen Niederschlagsdargebotes ohnehin schon geringen Grundwasserneubildung hin. Die H{\"o}he der Grundwasserneubildung ist neben den hydroklimatischen Randbedingungen auch von der Landnutzung abh{\"a}ngig. Ver{\"a}nderungen in der Waldvegetation und der hydroklimatischen Randbedingungen bewirken {\"A}nderungen der Grundwasserneubildung und beeinflussen somit auch den Wasserhaushalt der Seen und Feuchtgebiete. Aktuell wird die Waldvegetation durch Kiefernmonokulturen dominiert, mit im Vergleich zu anderen Baumarten h{\"o}herer Evapotranspiration. Entwicklungen in der Forstwirtschaft streben die Verringerung von Kiefernmonokulturen an. Diese sollen langfristig auf geeigneten Standorten durch Laubmischw{\"a}lder ersetzt werden. Dadurch lassen sich eine geringere Evapotranspiration und damit eine h{\"o}here Grundwasserneubildung erreichen. In der vorliegenden Arbeit werden am Beispiel des Redernswalder Sees und des Briesensees die Ursachen der beobachteten sinkenden Wasserst{\"a}nde analysiert. Ihre Wasserst{\"a}nde nahmen in den letzten 25 Jahren um mehr als 3 Meter ab. Weiterhin wird untersucht, wie die erwarteten Klima{\"a}nderungen und Ver{\"a}nderungen in der Waldbewirtschaftung die zuk{\"u}nftige Grundwasserneubildung und den Wasserhaushalt von Seen beeinflussen k{\"o}nnen. Die Entwicklung der Grundwasserneubildung im Untersuchungsgebiet wurde mit dem Wasserhaushaltsmodell WaSiM-ETH simuliert. Die Analyse der Wechselwirkungen der Seen mit dem regionalen quart{\"a}ren Grundwasserleitersystem erfolgte mit dem 3D-Grundwassermodell FEFLOW. M{\"o}gliche zuk{\"u}nftige Ver{\"a}nderungen der Grundwasserneubildung und der Seewasserst{\"a}nde durch Klima{\"a}nderungen und Waldumbau wurden mit Szenarienrechnungen bis zum Jahr 2100 analysiert. Die modellgest{\"u}tzte Analyse zeigte, dass die beobachteten abnehmenden Wasserst{\"a}nde zu etwa gleichen Anteilen durch Ver{\"a}nderungen der hydroklimatischen Randbedingungen sowie durch Ver{\"a}nderungen in der Waldvegetation und damit abnehmenden Grundwasserneubildungsraten zu erkl{\"a}ren sind. Die zuk{\"u}nftigen Entwicklungen der Grundwasserneubildung und der Wasserst{\"a}nde sind gepr{\"a}gt von sich {\"a}ndernden hydroklimatischen Randbedingungen und einem sukzessiven Wandel der Kiefernbest{\"a}nde zu Laubw{\"a}ldern. Der Waldumbau hat positive Wirkungen auf die Grundwasserneubildung und damit auf die Wasserst{\"a}nde. Damit k{\"o}nnen die Einfl{\"u}sse des eingesetzten REMO-A1B-Klimaszenarios zum Ende des Modellzeitraumes durch den Waldumbau nicht kompensiert werden, das Sinken des Wasserstandes wird jedoch wesentlich reduziert. Bei dem moderateren REMO-B1-Klimaszenario werden die Wasserst{\"a}nde des Jahres 2008 durch den Waldumbau bis zum Jahr 2100 {\"u}berschritten.}, language = {de} } @phdthesis{Robinson2011, author = {Robinson, Alexander}, title = {Modeling the Greenland Ice Sheet response to climate change in the past and future}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50430}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The Greenland Ice Sheet (GIS) contains enough water volume to raise global sea level by over 7 meters. It is a relic of past glacial climates that could be strongly affected by a warming world. Several studies have been performed to investigate the sensitivity of the ice sheet to changes in climate, but large uncertainties in its long-term response still exist. In this thesis, a new approach has been developed and applied to modeling the GIS response to climate change. The advantages compared to previous approaches are (i) that it can be applied over a wide range of climatic scenarios (both in the deep past and the future), (ii) that it includes the relevant feedback processes between the climate and the ice sheet and (iii) that it is highly computationally efficient, allowing simulations over very long timescales. The new regional energy-moisture balance model (REMBO) has been developed to model the climate and surface mass balance over Greenland and it represents an improvement compared to conventional approaches in modeling present-day conditions. Furthermore, the evolution of the GIS has been simulated over the last glacial cycle using an ensemble of model versions. The model performance has been validated against field observations of the present-day climate and surface mass balance, as well as paleo information from ice cores. The GIS contribution to sea level rise during the last interglacial is estimated to be between 0.5-4.1 m, consistent with previous estimates. The ensemble of model versions has been constrained to those that are consistent with the data, and a range of valid parameter values has been defined, allowing quantification of the uncertainty and sensitivity of the modeling approach. Using the constrained model ensemble, the sensitivity of the GIS to long-term climate change was investigated. It was found that the GIS exhibits hysteresis behavior (i.e., it is multi-stable under certain conditions), and that a temperature threshold exists above which the ice sheet transitions to an essentially ice-free state. The threshold in the global temperature is estimated to be in the range of 1.3-2.3°C above preindustrial conditions, significantly lower than previously believed. The timescale of total melt scales non-linearly with the overshoot above the temperature threshold, such that a 2°C anomaly causes the ice sheet to melt in ca. 50,000 years, but an anomaly of 6°C will melt the ice sheet in less than 4,000 years. The meltback of the ice sheet was found to become irreversible after a fraction of the ice sheet is already lost - but this level of irreversibility also depends on the temperature anomaly.}, language = {en} } @phdthesis{Huber2010, author = {Huber, Veronika Emilie Charlotte}, title = {Climate impact on phytoplankton blooms in shallow lakes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-42346}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Lake ecosystems across the globe have responded to climate warming of recent decades. However, correctly attributing observed changes to altered climatic conditions is complicated by multiple anthropogenic influences on lakes. This thesis contributes to a better understanding of climate impacts on freshwater phytoplankton, which forms the basis of the food chain and decisively influences water quality. The analyses were, for the most part, based on a long-term data set of physical, chemical and biological variables of a shallow, polymictic lake in north-eastern Germany (M{\"u}ggelsee), which was subject to a simultaneous change in climate and trophic state during the past three decades. Data analysis included constructing a dynamic simulation model, implementing a genetic algorithm to parameterize models, and applying statistical techniques of classification tree and time-series analysis. Model results indicated that climatic factors and trophic state interactively determine the timing of the phytoplankton spring bloom (phenology) in shallow lakes. Under equally mild spring conditions, the phytoplankton spring bloom collapsed earlier under high than under low nutrient availability, due to a switch from a bottom-up driven to a top-down driven collapse. A novel approach to model phenology proved useful to assess the timings of population peaks in an artificially forced zooplankton-phytoplankton system. Mimicking climate warming by lengthening the growing period advanced algal blooms and consequently also peaks in zooplankton abundance. Investigating the reasons for the contrasting development of cyanobacteria during two recent summer heat wave events revealed that anomalously hot weather did not always, as often hypothesized, promote cyanobacteria in the nutrient-rich lake studied. The seasonal timing and duration of heat waves determined whether critical thresholds of thermal stratification, decisive for cyanobacterial bloom formation, were crossed. In addition, the temporal patterns of heat wave events influenced the summer abundance of some zooplankton species, which as predators may serve as a buffer by suppressing phytoplankton bloom formation. This thesis adds to the growing body of evidence that lake ecosystems have strongly responded to climatic changes of recent decades. It reaches beyond many previous studies of climate impacts on lakes by focusing on underlying mechanisms and explicitly considering multiple environmental changes. Key findings show that climate impacts are more severe in nutrient-rich than in nutrient-poor lakes. Hence, to develop lake management plans for the future, limnologists need to seek a comprehensive, mechanistic understanding of overlapping effects of the multi-faceted human footprint on aquatic ecosystems.}, language = {en} } @phdthesis{Fuerstenau2008, author = {F{\"u}rstenau, Cornelia}, title = {The impact of silvicultural strategies and climate change on carbon sequestration and other forest ecosystem functions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-27657}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Forests are a key resource serving a multitude of functions such as providing income to forest owners, supplying industries with timber, protecting water resources, and maintaining biodiversity. Recently much attention has been given to the role of forests in the global carbon cycle and their management for increased carbon sequestration as a possible mitigation option against climate change. Furthermore, the use of harvested wood can contribute to the reduction of atmospheric carbon through (i) carbon sequestration in wood products, (ii) the substitution of non-wood products with wood products, and (iii) through the use of wood as a biofuel to replace fossil fuels. Forest resource managers are challenged by the task to balance these multiple while simultaneously meeting economic requirements and taking into consideration the demands of stakeholder groups. Additionally, risks and uncertainties with regard to uncontrollable external variables such as climate have to be considered in the decision making process. In this study a scientific stakeholder dialogue with forest-related stakeholder groups in the Federal State of Brandenburg was accomplished. The main results of this dialogue were the definition of major forest functions (carbon sequestration, groundwater recharge, biodiversity, and timber production) and priority setting among them by the stakeholders using the pair-wise comparison technique. The impact of different forest management strategies and climate change scenarios on the main functions of forest ecosystems were evaluated at the Kleinsee management unit in south-east Brandenburg. Forest management strategies were simulated over 100 years using the forest growth model 4C and a wood product model (WPM). A current climate scenario and two climate change scenarios based on global circulation models (GCMs) HadCM2 and ECHAM4 were applied. The climate change scenario positively influenced stand productivity, carbon sequestration, and income. The impact on the other forest functions was small. Furthermore, the overall utility of forest management strategies were compared under the priority settings of stakeholders by a multi-criteria analysis (MCA) method. Significant differences in priority setting and the choice of an adequate management strategy were found for the environmentalists on one side and the more economy-oriented forest managers of public and private owned forests on the other side. From an ecological perspective, a conservation strategy would be preferable under all climate scenarios, but the business as usual management would also fit the expectations under the current climate. In contrast, a forest manager in public-owned forests or a private forest owner would prefer a management strategy with an intermediate thinning intensity and a high share of pine stands to enhance income from timber production while maintaining the other forest functions. The analysis served as an example for the combined application of simulation tools and a MCA method for the evaluation of management strategies under multi-purpose and multi-user settings with changing climatic conditions. Another focus was set on quantifying the overall effect of forest management on carbon sequestration in the forest sector and the wood industry sector plus substitution effects. To achieve this objective, the carbon emission reduction potential of material and energy substitution (Smat and Sen) was estimated based on a literature review. On average, for each tonne of dry wood used in a wood product substituting a non-wood product, 0.71 fewer tonnes of fossil carbon are emitted into to the atmosphere. Based on Smat and Sen, the calculation of the carbon emission reduction through substitution was implemented in the WPM. Carbon sequestration and substitution effects of management strategies were simulated at three local scales using the WPM and the forest growth models 4C (management unit level) or EFISCEN (federal state of Brandenburg and Germany). An investigation was conducted on the influence of uncertainties in the initialisation of the WPM, Smat, and basic conditions of the wood product sector on carbon sequestration. Results showed that carbon sequestration in the wood industry sector plus substitution effects exceeded sequestration in the forest sector. In contrast to the carbon pools in the forest sector, which acted as sink or source, the substitution effects continually reduced carbon emission as long as forests are managed and timber is harvested. The main climate protection function was investigated for energy substitution which accounted for about half of the total carbon sequestration, followed by carbon storage in landfills. In Germany, the absolute annual carbon sequestration in the forest and wood industry sector plus substitution effects was 19.9 Mt C. Over 50 years the wood industry sector contributed 70\% of the total carbon sequestration plus substitution effects.}, language = {en} } @misc{KoechyMathajJeltschetal.2008, author = {K{\"o}chy, Martin and Mathaj, Martin and Jeltsch, Florian and Malkinson, Dan}, title = {Resilience of stocking capacity to changing climate in arid to Mediterranean landscapes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18720}, year = {2008}, abstract = {Small livestock is an important resource for rural human populations in dry climates. How strongly will climate change affect the capacity of the rangeland? We used hierarchical modelling to scale quantitatively the growth of shrubs and annual plants, the main food of sheep and goats, to the landscape extent in the eastern Mediterranean region. Without grazing, productivity increased in a sigmoid way with mean annual precipitation. Grazing reduced productivity more strongly the drier the landscape. At a point just under the stocking capacity of the vegetation, productivity declined precipitously with more intense grazing due to a lack of seed production of annuals. We repeated simulations with precipitation patterns projected by two contrasting IPCC scenarios. Compared to results based on historic patterns, productivity and stocking capacity did not differ in most cases. Thus, grazing intensity remains the stronger impact on landscape productivity in this dry region even in the future.}, language = {en} } @phdthesis{Popp2007, author = {Popp, Alexander}, title = {An integrated modelling approach for sustainable management of semi-arid and arid rangelands}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15103}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The need to develop sustainable resource management strategies for semi-arid and arid rangelands is acute as non-adapted grazing strategies lead to irreversible environmental problems such as desertification and associated loss of economic support to society. In such vulnerable ecosystems, successful implementation of sustainable management strategies depends on well-founded under-standing of processes at different scales that underlay the complex system dynamic. There is ample evidence that, in contrast to traditional sectoral approaches, only interdisciplinary research does work for resolving problems in conservation and natural resource management. In this thesis I combined a range of modeling approaches that integrate different disciplines and spatial scales in order to contribute to basic guidelines for sustainable management of semi-arid and arid range-lands. Since water availability and livestock management are seen as most potent determinants for the dynamics of semi-arid and arid ecosystems I focused on (i) the interaction of ecological and hydro-logical processes and (ii) the effect of farming strategies. First, I developed a grid-based and small-scaled model simulating vegetation dynamics and inter-linked hydrological processes. The simulation results suggest that ecohydrological interactions gain importance in rangelands with ascending slope where vegetation cover serves to obstruct run-off and decreases evaporation from the soil. Disturbances like overgrazing influence these positive feedback mechanisms by affecting vegetation cover and composition. In the second part, I present a modeling approach that has the power to transfer and integrate ecological information from the small scale vegetation model to the landscape scale, most relevant for the conservation of biodiversity and sustainable management of natural resources. I combined techniques of stochastic modeling with remotely sensed data and GIS to investigate to which ex-tent spatial interactions, like the movement of surface water by run-off in water limited environments, affect ecosystem functioning at the landscape scale. My simulation experiments show that overgrazing decreases the number of vegetation patches that act as hydrological sinks and run-off increases. The results of both simulation models implicate that different vegetation types should not only be regarded as provider of forage production but also as regulator of ecosystem functioning. Vegetation patches with good cover of perennial vegetation are capable to catch and conserve surface run-off from degraded surrounding areas. Therefore, downstream out of the simulated system is prevented and efficient use of water resources is guaranteed at all times. This consequence also applies to commercial rotational grazing strategies for semi-arid and arid rangelands with ascending slope where non-degraded paddocks act as hydrological sinks. Finally, by the help of an integrated ecological-economic modeling approach, I analyzed the relevance of farmers' ecological knowledge for longterm functioning of semi-arid and arid grazing systems under current and future climatic conditions. The modeling approach consists of an ecological and an economic module and combines relevant processes on either level. Again, vegetation dynamics and forage productivity is derived by the small-scaled vegetation model. I showed that sustainable management of semi-arid and arid rangelands relies strongly on the farmers' knowledge on how the ecosystem works. Furthermore, my simulation results indicate that the projected lower annual rainfall due to climate change in combination with non-adapted grazing strategies adds an additional layer of risk to these ecosystems that are already prone to land degradation. All simulation models focus on the most essential factors and ignore specific details. Therefore, even though all simulation models are parameterized for a specific dwarf shrub savanna in arid southern Namibia, the conclusions drawn are applicable for semi-arid and arid rangelands in general.}, language = {en} } @misc{Koechy2006, author = {K{\"o}chy, Martin}, title = {Opposite trends in life stages of annual plants caused by daily rainfall variability}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14699}, pages = {347 -- 357}, year = {2006}, abstract = {Global Circulation Models of climate predict not only a change of annual precipitation amounts but also a shift in the daily distribution. To improve the understanding of the importance of daily rain pattern for annual plant communities, which represent a large portion of semi-natural vegetation in the Middle East, I used a detailed, spatially explicit model. The model explicitly considers water storage in the soil and has been parameterized and validated with data collected in field experiments in Israel and data from the literature. I manipulated daily rainfall variability by increasing the mean daily rain intensity on rainy days (MDI, rain volume/day) and decreasing intervals between rainy days while keeping the mean annual amount constant. In factorial combination, I also increased mean annual precipitation (MAP). I considered five climatic regions characterized by 100, 300, 450, 600, and 800 mm MAP. Increasing MDI decreased establishment when MAP was >250 mm but increased establishment at more arid sites. The negative effect of increasing MDI was compensated by increasing mortality with increasing MDI in dry and typical Mediterranean regions (c. 360-720 mm MAP). These effects were strongly tied to water availability in upper and lower soil layers and modified by competition among seedlings and adults. Increasing MAP generally increased water availability, establishment, and density. The order of magnitudes of MDI and MAP effects overlapped partially so that their combined effect is important for projections of climate change effects on annual vegetation. The effect size of MAP and MDI followed a sigmoid curve along the MAP gradient indicating that the semi-arid region (≈300 mm MAP) is the most sensitive to precipitation change with regard to annual communitie}, subject = {Klima{\"a}nderung}, language = {en} } @misc{Koechy2006, author = {K{\"o}chy, Martin}, title = {Stochastic time series of daily precipitation for the interior of Israel}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13155}, year = {2006}, abstract = {This contribution describes a generator of stochastic time series of daily precipitation for the interior of Israel from c. 90 to 900 mm mean annual precipitation (MAP) as a tool for studies of daily rain variability. The probability of rainfall on a given day of the year is described by a regular Gaussian peak curve function. The amount of rain is drawn randomly from an exponential distribution whose mean is the daily mean rain amount (averaged across years for each day of the year) described by a flattened Gaussian peak curve. Parameters for the curves have been calculated from monthly aggregated, long-term rain records from seven meteorological stations. Parameters for arbitrary points on the MAP gradient are calculated from a regression equation with MAP as the only independent variable. The simple structure of the generator allows it to produce time series with daily rain patterns that are projected under climate change scenarios and simultaneously control MAP. Increasing within-year variability of daily precipitation amounts also increases among-year variability of MAP as predicted by global circulation models. Thus, the time series incorporate important characteristics for climate change research and represent a flexible tool for simulations of daily vegetation or surface hydrology dynamics.}, language = {en} } @phdthesis{Post2006, author = {Post, Joachim}, title = {Integrated process-based simulation of soil carbon dynamics in river basins under present, recent past and future environmental conditions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-11507}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {Soils contain a large amount of carbon (C) that is a critical regulator of the global C budget. Already small changes in the processes governing soil C cycling have the potential to release considerable amounts of CO2, a greenhouse gas (GHG), adding additional radiative forcing to the atmosphere and hence to changing climate. Increased temperatures will probably create a feedback, causing soils to release more GHGs. Furthermore changes in soil C balance impact soil fertility and soil quality, potentially degrading soils and reducing soils function as important resource. Consequently the assessment of soil C dynamics under present, recent past and future environmental conditions is not only of scientific interest and requires an integrated consideration of main factors and processes governing soil C dynamics. To perform this assessment an eco-hydrological modelling tool was used and extended by a process-based description of coupled soil carbon and nitrogen turnover. The extended model aims at delivering sound information on soil C storage changes beside changes in water quality, quantity and vegetation growth under global change impacts in meso- to macro-scale river basins, exemplary demonstrated for a Central European river basin (the Elbe). As a result this study: ▪ Provides information on joint effects of land-use (land cover and land management) and climate changes on croplands soil C balance in the Elbe river basin (Central Europe) presently and in the future. ▪ Evaluates which processes, and at what level of process detail, have to be considered to perform an integrated simulation of soil C dynamics at the meso- to macro-scale and demonstrates the model's capability to simulate these processes compared to observations. ▪ Proposes a process description relating soil C pools and turnover properties to readily measurable quantities. This reduces the number of model parameters, enhances the comparability of model results to observations, and delivers same performance simulating long-term soil C dynamics as other models. ▪ Presents an extensive assessment of the parameter and input data uncertainty and their importance both temporally and spatially on modelling soil C dynamics. For the basin scale assessments it is estimated that croplands in the Elbe basin currently act as a net source of carbon (net annual C flux of 11 g C m-2 yr-1, 1.57 106 tons CO2 yr-1 entire croplands on average). Although this highly depends on the amount of harvest by-products remaining on the field. Future anticipated climate change and observed climate change in the basin already accelerates soil C loss and increases source strengths (additional 3.2 g C m-2 yr-1, 0.48 106 tons CO2 yr-1 entire croplands). But anticipated changes of agro-economic conditions, translating to altered crop share distributions, display stronger effects on soil C storage than climate change. Depending on future use of land expected to fall out of agricultural use in the future (~ 30 \% of croplands area as "surplus" land), the basin either considerably looses soil C and the net annual C flux to the atmosphere increases (surplus used as black fallow) or the basin converts to a net sink of C (sequestering 0.44 106 tons CO2 yr-1 under extensified use as ley-arable) or reacts with decrease in source strength when using bioenergy crops. Bioenergy crops additionally offer a considerable potential for fossil fuel substitution (~37 PJ, 1015 J per year), whereas the basin wide use of harvest by-products for energy generation has to be seen critically although offering an annual energy potential of approximately 125 PJ. Harvest by-products play a central role in soil C reproduction and a percentage between 50 and 80 \% should remain on the fields in order to maintain soil quality and fertility. The established modelling tool allows quantifying climate, land use and major land management impacts on soil C balance. New is that the SOM turnover description is embedded in an eco-hydrological river basin model, allowing an integrated consideration of water quantity, water quality, vegetation growth, agricultural productivity and soil carbon changes under different environmental conditions. The methodology and assessment presented here demonstrates the potential for integrated assessment of soil C dynamics alongside with other ecosystem services under global change impacts and provides information on the potentials of soils for climate change mitigation (soil C sequestration) and on their soil fertility status.}, subject = {Kohlenstoff}, language = {en} } @phdthesis{Schwager2005, author = {Schwager, Monika}, title = {Climate change, variable colony sizes and temporal autocorrelation : consequences of living in changing environments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5744}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Natural and human induced environmental changes affect populations at different time scales. If they occur in a spatial heterogeneous way, they cause spatial variation in abundance. In this thesis I addressed three topics, all related to the question, how environmental changes influence population dynamics. In the first part, I analysed the effect of positive temporal autocorrelation in environmental noise on the extinction risk of a population, using a simple population model. The effect of autocorrelation depended on the magnitude of the effect of single catastrophic events of bad environmental conditions on a population. If a population was threatened by extinction only, when bad conditions occurred repeatedly, positive autocorrelation increased extinction risk. If a population could become extinct, even if bad conditions occurred only once, positive autocorrelation decreased extinction risk. These opposing effects could be explained by two features of an autocorrelated time series. On the one hand, positive autocorrelation increased the probability of series of bad environmental conditions, implying a negative effect on populations. On the other hand, aggregation of bad years also implied longer periods with relatively good conditions. Therefore, for a given time period, the overall probability of occurrence of at least one extremely bad year was reduced in autocorrelated noise. This can imply a positive effect on populations. The results could solve a contradiction in the literature, where opposing effects of autocorrelated noise were found in very similar population models. In the second part, I compared two approaches, which are commonly used for predicting effects of climate change on future abundance and distribution of species: a "space for time approach", where predictions are based on the geographic pattern of current abundance in relation to climate, and a "population modelling approach" which is based on correlations between demographic parameters and the inter-annual variation of climate. In this case study, I compared the two approaches for predicting the effect of a shift in mean precipitation on a population of the sociable weaver Philetairus socius, a common colonially living passerine bird of semiarid savannahs of southern Africa. In the space for time approach, I compared abundance and population structure of the sociable weaver in two areas with highly different mean annual precipitation. The analysis showed no difference between the two populations. This result, as well as the wide distribution range of the species, would lead to the prediction of no sensitive response of the species to a slight shift in mean precipitation. In contrast, the population modelling approach, based on a correlation between reproductive success and rainfall, predicted a sensitive response in most model types. The inconsistency of predictions was confirmed in a cross-validation between the two approaches. I concluded that the inconsistency was caused, because the two approaches reflect different time scales. On a short time scale, the population may respond sensitively to rainfall. However, on a long time scale, or in a regional comparison, the response may be compensated or buffered by a variety of mechanisms. These may include behavioural or life history adaptations, shifts in the interactions with other species, or differences in the physical environment. The study implies that understanding, how such mechanisms work, and at what time scale they would follow climate change, is a crucial precondition for predicting ecological consequences of climate change. In the third part of the thesis, I tested why colony sizes of the sociable weaver are highly variable. The high variation of colony sizes is surprising, as in studies on coloniality it is often assumed that an optimal colony size exists, in which individual bird fitness is maximized. Following this assumption, the pattern of bird dispersal should keep colony sizes near an optimum. However, I showed by analysing data on reproductive success and survival that for the sociable weaver fitness in relation to colony size did not follow an optimum curve. Instead, positive and negative effects of living in large colonies overlaid each other in a way that fitness was generally close to one, and density dependence was low. I showed in a population model, which included an evolutionary optimisation process of dispersal that this specific shape of the fitness function could lead to a dispersal strategy, where the variation of colony sizes was maintained.}, subject = {Populationsbiologie}, language = {en} } @phdthesis{Thonicke2003, author = {Thonicke, Kirsten}, title = {Fire disturbance and vegetation dynamics : analysis and models}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000713}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Untersuchungen zur Rolle nat{\"u}rlicher St{\"o}rungen in der Vegetation bzw. in {\"O}kosystemen zeigen, dass nat{\"u}rliche St{\"o}rungen ein essentielles und intrinsisches Element in {\"O}kosystemen darstellen, substanziell zur Vitalit{\"a}t und strukturellen Diversit{\"a}t der {\"O}kosysteme beitragen und Stoffkreisl{\"a}ufe sowohl auf dem lokalen als auch auf dem globalen Niveau beeinflussen. Feuer als Grasland-, Busch- oder Waldbrand ist ein besonderes St{\"o}rungsagens, da es sowohl durch biotische als auch abiotische Umweltfaktoren verursacht wird. Es beeinflusst biogeochemische Kreisl{\"a}ufe und spielt f{\"u}r die chemische Zusammensetzung der Atmosph{\"a}re durch Freisetzung klimarelevanter Spurengase und Aerosole aus der Verbrennung von Biomasse eine bedeutende Rolle. Dies wird auch durch die Emission von ca. 3.9 Gt Kohlenstoff pro Jahr unterstrichen, was einen großen Anteil am globalen Gesamtaufkommen ausmacht. Ein kombiniertes Modell, das die Effekte und R{\"u}ckkopplungen zwischen Feuer und Vegetation beschreibt, wurde erforderlich, als {\"A}nderungen in den Feuerregimes als Folge von {\"A}nderungen in der Landnutzung und dem Landmanagement festgestellt wurden. Diese Notwendigkeit wurde noch durch die Erkenntnis unterstrichen, daß die Menge verbrennender Biomasse als ein bedeutender Kohlenstoffluß sowohl die chemische Zusammensetzung der Atmosph{\"a}re und das Klima, aber auch die Vegetationsdynamik selbst beeinflusst. Die bereits existierenden Modellans{\"a}tze reichen hier jedoch nicht aus, um entsprechende Untersuchungen durchzuf{\"u}hren. Als eine Schlussfolgerung daraus wurde eine optimale Menge von Faktoren gefunden, die das Auftreten und die Ausbreitung des Feuers, sowie deren {\"o}kosystemare Effekte ausreichend beschreiben. Ein solches Modell sollte die Merkmale beobachteter Feuerregime simulieren k{\"o}nnen und Analysen der Interaktionen zwischen Feuer und Vegetationsdynamik unterst{\"u}tzen, um auch Ursachen f{\"u}r bestimmte {\"A}nderungen in den Feuerregimes herausfinden zu k{\"o}nnen. Insbesondere die dynamischen Verkn{\"u}pfungen zwischen Vegetation, Klima und Feuerprozessen sind von Bedeutung, um dynamische R{\"u}ckkopplungen und Effekte einzelner, ver{\"a}nderter Umweltfaktoren zu analysieren. Dadurch ergab sich die Notwendigkeit, neue Feuermodelle zu entwickeln, die die genannten Untersuchungen erlauben und das Verst{\"a}ndnis der Rolle des Feuer in der globalen {\"O}kologie verbessern. Als Schlussfolgerung der Dissertation wird festgestellt, dass Feuchtebedingungen, ihre Andauer {\"u}ber die Zeit (L{\"a}nge der Feuersaison) und die Streumenge die wichtigsten Komponenten darstellen, die die Verteilung der Feuerregime global beschreiben. Werden Zeitreihen einzelner Regionen simuliert, sollten besondere Entz{\"u}ndungsquellen, brandkritische Klimabedingungen und die Bestandesstruktur als zus{\"a}tzliche Determinanten ber{\"u}cksichtigt werden. Die Bestandesstruktur ver{\"a}ndert das Niveau des Auftretens und der Ausbreitung von Feuer, beeinflusst jedoch weniger dessen interannuelle Variabilit{\"a}t. Das es wichtig ist, die vollst{\"a}ndige Wirkungskette wichtiger Feuerprozesse und deren Verkn{\"u}pfungen mit der Vegetationsdynamik zu ber{\"u}cksichtigen, wird besonders unter Klima{\"a}nderungsbedingungen deutlich. Eine l{\"a}nger werdende, vom Klima abh{\"a}ngige Feuersaison bedeutet nicht automatisch eine im gleichen Maße anwachsende Menge verbrannter Biomasse. Sie kann durch {\"A}nderungen in der Produktivit{\"a}t der Vegetation gepuffert oder beschleunigt werden. Sowohl durch {\"A}nderungen der Bestandesstruktur als auch durch eine erh{\"o}hte Produktivit{\"a}t der Vegetation k{\"o}nnen {\"A}nderungen der Feuereigenschaften noch weiter intensiviert werden und zu noch h{\"o}heren, feuerbezogenen Emissionen f{\"u}hren.}, language = {en} } @phdthesis{Guentner2002, author = {G{\"u}ntner, Andreas}, title = {Large-scale hydrological modelling in the semi-arid north-east of Brazil}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000511}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {Semi-arid areas are, due to their climatic setting, characterized by small water resources. An increasing water demand as a consequence of population growth and economic development as well as a decreasing water availability in the course of possible climate change may aggravate water scarcity in future, which often exists already for present-day conditions in these areas. Understanding the mechanisms and feedbacks of complex natural and human systems, together with the quantitative assessment of future changes in volume, timing and quality of water resources are a prerequisite for the development of sustainable measures of water management to enhance the adaptive capacity of these regions. For this task, dynamic integrated models, containing a hydrological model as one component, are indispensable tools. The main objective of this study is to develop a hydrological model for the quantification of water availability in view of environmental change over a large geographic domain of semi-arid environments. The study area is the Federal State of Cear{\´a} (150 000 km2) in the semi-arid north-east of Brazil. Mean annual precipitation in this area is 850 mm, falling in a rainy season with duration of about five months. Being mainly characterized by crystalline bedrock and shallow soils, surface water provides the largest part of the water supply. The area has recurrently been affected by droughts which caused serious economic losses and social impacts like migration from the rural regions. The hydrological model Wasa (Model of Water Availability in Semi-Arid Environments) developed in this study is a deterministic, spatially distributed model being composed of conceptual, process-based approaches. Water availability (river discharge, storage volumes in reservoirs, soil moisture) is determined with daily resolution. Sub-basins, grid cells or administrative units (municipalities) can be chosen as spatial target units. The administrative units enable the coupling of Wasa in the framework of an integrated model which contains modules that do not work on the basis of natural spatial units. The target units mentioned above are disaggregated in Wasa into smaller modelling units within a new multi-scale, hierarchical approach. The landscape units defined in this scheme capture in particular the effect of structured variability of terrain, soil and vegetation characteristics along toposequences on soil moisture and runoff generation. Lateral hydrological processes at the hillslope scale, as reinfiltration of surface runoff, being of particular importance in semi-arid environments, can thus be represented also within the large-scale model in a simplified form. Depending on the resolution of available data, small-scale variability is not represented explicitly with geographic reference in Wasa, but by the distribution of sub-scale units and by statistical transition frequencies for lateral fluxes between these units. Further model components of Wasa which respect specific features of semi-arid hydrology are: (1) A two-layer model for evapotranspiration comprises energy transfer at the soil surface (including soil evaporation), which is of importance in view of the mainly sparse vegetation cover. Additionally, vegetation parameters are differentiated in space and time in dependence on the occurrence of the rainy season. (2) The infiltration module represents in particular infiltration-excess surface runoff as the dominant runoff component. (3) For the aggregate description of the water balance of reservoirs that cannot be represented explicitly in the model, a storage approach respecting different reservoirs size classes and their interaction via the river network is applied. (4) A model for the quantification of water withdrawal by water use in different sectors is coupled to Wasa. (5) A cascade model for the temporal disaggregation of precipitation time series, adapted to the specific characteristics of tropical convective rainfall, is applied for the generating rainfall time series of higher temporal resolution. All model parameters of Wasa can be derived from physiographic information of the study area. Thus, model calibration is primarily not required. Model applications of Wasa for historical time series generally results in a good model performance when comparing the simulation results of river discharge and reservoir storage volumes with observed data for river basins of various sizes. The mean water balance as well as the high interannual and intra-annual variability is reasonably represented by the model. Limitations of the modelling concept are most markedly seen for sub-basins with a runoff component from deep groundwater bodies of which the dynamics cannot be satisfactorily represented without calibration. Further results of model applications are: (1) Lateral processes of redistribution of runoff and soil moisture at the hillslope scale, in particular reinfiltration of surface runoff, lead to markedly smaller discharge volumes at the basin scale than the simple sum of runoff of the individual sub-areas. Thus, these processes are to be captured also in large-scale models. The different relevance of these processes for different conditions is demonstrated by a larger percentage decrease of discharge volumes in dry as compared to wet years. (2) Precipitation characteristics have a major impact on the hydrological response of semi-arid environments. In particular, underestimated rainfall intensities in the rainfall input due to the rough temporal resolution of the model and due to interpolation effects and, consequently, underestimated runoff volumes have to be compensated in the model. A scaling factor in the infiltration module or the use of disaggregated hourly rainfall data show good results in this respect. The simulation results of Wasa are characterized by large uncertainties. These are, on the one hand, due to uncertainties of the model structure to adequately represent the relevant hydrological processes. On the other hand, they are due to uncertainties of input data and parameters particularly in view of the low data availability. Of major importance is: (1) The uncertainty of rainfall data with regard to their spatial and temporal pattern has, due to the strong non-linear hydrological response, a large impact on the simulation results. (2) The uncertainty of soil parameters is in general of larger importance on model uncertainty than uncertainty of vegetation or topographic parameters. (3) The effect of uncertainty of individual model components or parameters is usually different for years with rainfall volumes being above or below the average, because individual hydrological processes are of different relevance in both cases. Thus, the uncertainty of individual model components or parameters is of different importance for the uncertainty of scenario simulations with increasing or decreasing precipitation trends. (4) The most important factor of uncertainty for scenarios of water availability in the study area is the uncertainty in the results of global climate models on which the regional climate scenarios are based. Both a marked increase or a decrease in precipitation can be assumed for the given data. Results of model simulations for climate scenarios until the year 2050 show that a possible future change in precipitation volumes causes a larger percentage change in runoff volumes by a factor of two to three. In the case of a decreasing precipitation trend, the efficiency of new reservoirs for securing water availability tends to decrease in the study area because of the interaction of the large number of reservoirs in retaining the overall decreasing runoff volumes.}, subject = {Cear{\´a} / Semiarides Gebiet / Wasserreserve / Hydrologie / Mathematisches Modell}, language = {en} }