@article{HartwichStraileGaedkeetal.2012, author = {Hartwich, Melanie and Straile, Dietmar and Gaedke, Ursula and Wacker, Alexander}, title = {Use of ciliate and phytoplankton taxonomic composition for the estimation of eicosapentaenoic acid concentration in lakes}, series = {Freshwater biology}, volume = {57}, journal = {Freshwater biology}, number = {7}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0046-5070}, doi = {10.1111/j.1365-2427.2012.02799.x}, pages = {1385 -- 1398}, year = {2012}, abstract = {1. The polyunsaturated fatty acid eicosapentaenoic acid (EPA) plays an important role in aquatic food webs, in particular at the primary producerconsumer interface where keystone species such as daphnids may be constrained by its dietary availability. Such constraints and their seasonal and interannual changes may be detected by continuous measurements of EPA concentrations. However, such EPA measurements became common only during the last two decades, whereas long-term data sets on plankton biomass are available for many well-studied lakes. Here, we test whether it is possible to estimate EPA concentrations from abiotic variables (light and temperature) and the biomass of prey organisms (e.g. ciliates, diatoms and cryptophytes) that potentially provide EPA for consumers. 2. We used multiple linear regression to relate size- and taxonomically resolved plankton biomass data and measurements of temperature and light intensity to directly measured EPA concentrations in Lake Constance during a whole year. First, we tested the predictability of EPA concentrations from the biomass of EPA-rich organisms (diatoms, cryptophytes and ciliates). Secondly, we included the variables mean temperature and mean light intensity over the sampling depth (020 m) and depth (08 and 820 m) as factors in our model to check for large-scale seasonal- and depth-dependent effects on EPA concentrations. In a third step, we included the deviations of light and temperature from mean values in our model to allow for their potential influence on the biochemical composition of plankton organisms. We used the Akaike Information Criterion to determine the best models. 3. All approaches supported our proposition that the biomasses of specific plankton groups are variables from which seston EPA concentrations can be derived. The importance of ciliates as an EPA source in the seston was emphasised by their high weight in our models, although ciliates are neglected in most studies that link fatty acids to seston taxonomic composition. The large-scale seasonal variability of light intensity and its interaction with diatom biomass were significant predictors of EPA concentrations. The deviation of temperature from mean values, accounting for a depth-dependent effect on EPA concentrations, and its interaction with ciliate biomass were also variables with high predictive power. 4. The best models from the first and second approaches were validated with measurements of EPA concentrations from another year (1997). The estimation with the best model including only biomass explained 80\%, and the best model from the second approach including mean temperature and depth explained 87\% of the variability in EPA concentrations in 1997. 5. We show that it is possible to predict EPA concentrations reliably from plankton biomass, while the inclusion of abiotic factors led to results that were only partly consistent with expectations from laboratory studies. Our approach of including biotic predictors should be transferable to other systems and allow checking for biochemical constraints on primary consumers.}, language = {en} } @article{RochaVasseurHaynetal.2011, author = {Rocha, Marcia R. and Vasseur, David A. and Hayn, Michael and Holschneider, Matthias and Gaedke, Ursula}, title = {Variability patterns differ between standing stock and process rates}, series = {Oikos}, volume = {120}, journal = {Oikos}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0030-1299}, doi = {10.1111/j.1600-0706.2010.18786.x}, pages = {17 -- 25}, year = {2011}, abstract = {Standing stocks are typically easier to measure than process rates such as production. Hence, stocks are often used as indicators of ecosystem functions although the latter are generally more strongly related to rates than to stocks. The regulation of stocks and rates and thus their variability over time may differ, as stocks constitute the net result of production and losses. Based on long-term high frequency measurements in a large, deep lake we explore the variability patterns in primary and bacterial production and relate them to those of the corresponding standing stocks, i.e. chlorophyll concentration, phytoplankton and bacterial biomass. We employ different methods (coefficient of variation, spline fitting and spectral analysis) which complement each other for assessing the variability present in the plankton data, at different temporal scales. In phytoplankton, we found that the overall variability of primary production is dominated by fluctuations at low frequencies, such as the annual, whereas in stocks and chlorophyll in particular, higher frequencies contribute substantially to the overall variance. This suggests that using standing stocks instead of rate measures leads to an under- or overestimation of food shortage for consumers during distinct periods of the year. The range of annual variation in bacterial production is 8 times greater than biomass, showing that the variability of bacterial activity (e.g. oxygen consumption, remineralisation) would be underestimated if biomass is used. The P/B ratios were variable and although clear trends are present in both bacteria and phytoplankton, no systematic relationship between stock and rate measures were found for the two groups. Hence, standing stock and process rate measures exhibit different variability patterns and care is needed when interpreting the mechanisms and implications of the variability encountered.}, language = {en} } @article{AberleMalzahnBauerLewandowskaetal.2012, author = {Aberle-Malzahn, Nicole and Bauer, Barbara and Lewandowska, A. and Gaedke, Ursula and Sommer, U.}, title = {Warming induces shifts in microzooplankton phenology and reduces time-lags between phytoplankton and protozoan production}, series = {Marine biology : international journal on life in oceans and coastal waters}, volume = {159}, journal = {Marine biology : international journal on life in oceans and coastal waters}, number = {11}, publisher = {Springer}, address = {New York}, issn = {0025-3162}, doi = {10.1007/s00227-012-1947-0}, pages = {2441 -- 2453}, year = {2012}, abstract = {Indoor mesocosm experiments were conducted to test for potential climate change effects on the spring succession of Baltic Sea plankton. Two different temperature (Delta 0 A degrees C and Delta 6 A degrees C) and three light scenarios (62, 57 and 49 \% of the natural surface light intensity on sunny days), mimicking increasing cloudiness as predicted for warmer winters in the Baltic Sea region, were simulated. By combining experimental and modeling approaches, we were able to test for a potential dietary mismatch between phytoplankton and zooplankton. Two general predator-prey models, one representing the community as a tri-trophic food chain and one as a 5-guild food web were applied to test for the consequences of different temperature sensitivities of heterotrophic components of the plankton. During the experiments, we observed reduced time-lags between the peaks of phytoplankton and protozoan biomass in response to warming. Microzooplankton peak biomass was reached by 2.5 day A degrees C-1 earlier and occurred almost synchronously with biomass peaks of phytoplankton in the warm mesocosms (Delta 6 A degrees C). The peak magnitudes of microzooplankton biomass remained unaffected by temperature, and growth rates of microzooplankton were higher at Delta 6 A degrees C (mu(a dagger 0 A degrees C) = 0.12 day(-1) and mu(a dagger 6 A degrees C) = 0.25 day(-1)). Furthermore, warming induced a shift in microzooplankton phenology leading to a faster species turnover and a shorter window of microzooplankton occurrence. Moderate differences in the light levels had no significant effect on the time-lags between autotrophic and heterotrophic biomass and on the timing, biomass maxima and growth rate of microzooplankton biomass. Both models predicted reduced time-lags between the biomass peaks of phytoplankton and its predators (both microzooplankton and copepods) with warming. The reduction of time-lags increased with increasing Q(10) values of copepods and protozoans in the tritrophic food chain. Indirect trophic effects modified this pattern in the 5-guild food web. Our study shows that instead of a mismatch, warming might lead to a stronger match between protist grazers and their prey altering in turn the transfer of matter and energy toward higher trophic levels.}, language = {en} } @article{SeifertWeithoffGaedkeetal.2015, author = {Seifert, Linda I. and Weithoff, Guntram and Gaedke, Ursula and Vos, Matthijs}, title = {Warming-induced changes in predation, extinction and invasion in an ectotherm food web}, series = {Oecologia}, volume = {178}, journal = {Oecologia}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-014-3211-4}, pages = {485 -- 496}, year = {2015}, abstract = {Climate change will alter the forces of predation and competition in temperate ectotherm food webs. This may increase local extinction rates, change the fate of invasions and impede species reintroductions into communities. Invasion success could be modulated by traits (e.g., defenses) and adaptations to climate. We studied how different temperatures affect the time until extinction of species, using bitrophic and tritrophic planktonic food webs to evaluate the relative importance of predatory overexploitation and competitive exclusion, at 15 and 25 A degrees C. In addition, we tested how inclusion of a subtropical as opposed to a temperate strain in this model food web affects times until extinction. Further, we studied the invasion success of the temperate rotifer Brachionus calyciflorus into the planktonic food web at 15 and 25 A degrees C on five consecutive introduction dates, during which the relative forces of predation and competition differed. A higher temperature dramatically shortened times until extinction of all herbivore species due to carnivorous overexploitation in tritrophic systems. Surprisingly, warming did not increase rates of competitive exclusion among the tested herbivore species in bitrophic communities. Including a subtropical herbivore strain reduced top-down control by the carnivore at high temperature. Invasion attempts of temperate B. calyciflorus into the food web always succeeded at 15 A degrees C, but consistently failed at 25 A degrees C due to voracious overexploitation by the carnivore. Pre-induction of defenses (spines) in B. calyciflorus before the invasion attempt did not change its invasion success at the high temperature. We conclude that high temperatures may promote local extinctions in temperate ectotherms and reduce their chances of successful recovery.}, language = {en} } @article{MehnerAttermeyerBraunsetal.2016, author = {Mehner, T. and Attermeyer, Katrin and Brauns, Mario and Brothers, Soren M. and Diekmann, J. and Gaedke, Ursula and Grossart, Hans-Peter and Koehler, J. and Lischke, Betty and Meyer, N. and Scharnweber, Inga Kristin and Syvaranta, J. and Vanni, M. J. and Hilt, S.}, title = {Weak Response of Animal Allochthony and Production to Enhanced Supply of Terrestrial Leaf Litter in Nutrient-Rich Lakes}, series = {Ecosystems}, volume = {19}, journal = {Ecosystems}, publisher = {Springer}, address = {New York}, issn = {1432-9840}, doi = {10.1007/s10021-015-9933-2}, pages = {311 -- 325}, year = {2016}, abstract = {Ecosystems are generally linked via fluxes of nutrients and energy across their boundaries. For example, freshwater ecosystems in temperate regions may receive significant inputs of terrestrially derived carbon via autumnal leaf litter. This terrestrial particulate organic carbon (POC) is hypothesized to subsidize animal production in lakes, but direct evidence is still lacking. We divided two small eutrophic lakes each into two sections and added isotopically distinct maize litter to the treatment sections to simulate increased terrestrial POC inputs via leaf litter in autumn. We quantified the reliance of aquatic consumers on terrestrial resources (allochthony) in the year subsequent to POC additions by applying mixing models of stable isotopes. We also estimated lake-wide carbon (C) balances to calculate the C flow to the production of the major aquatic consumer groups: benthic macroinvertebrates, crustacean zooplankton, and fish. The sum of secondary production of crustaceans and benthic macroinvertebrates supported by terrestrial POC was higher in the treatment sections of both lakes. In contrast, total secondary and tertiary production (supported by both autochthonous and allochthonous C) was higher in the reference than in the treatment sections of both lakes. Average aquatic consumer allochthony per lake section was 27-40\%, although terrestrial POC contributed less than about 10\% to total organic C supply to the lakes. The production of aquatic consumers incorporated less than 5\% of the total organic C supply in both lakes, indicating a low ecological efficiency. We suggest that the consumption of terrestrial POC by aquatic consumers facilitates a strong coupling with the terrestrial environment. However, the high autochthonous production and the large pool of autochthonous detritus in these nutrient-rich lakes make terrestrial POC quantitatively unimportant for the C flows within food webs.}, language = {en} }