@article{HamannBrownFeldmeieretal.2001, author = {Hamann, Wolf-Rainer and Brown, John C. and Feldmeier, Achim and Oskinova, Lida}, title = {On the wavelength drift of spectral features from structured hot star winds}, year = {2001}, abstract = {Spectral lines formed in stellar winds from OB stars are observed to exhibit profile variations. Discrete Absorption Components (DACs) show a remarkably slow wavelength drift with time. In a straightforward interpretation, this is in sharp contradiction to the steep velocity law predicted by the radiation-driven wind theory, and by semi- empirical profile fitting. In the present paper we re-discuss the interpretation of the drift rate. We show that the Co- rotating Interaction Region (CIR) model for the formation of DACs does not explain their slow drift rate as a consequence of rotation. On the contrary, the apparent acceleration of a spectral CIR feature is even higher than for the corresponding kinematical model without rotation. However, the observations can be understood by distinguishing between the velocity field of the matter flow, and the velocity law for the motion of the patterns in which the DAC features are formed. If the latter propagate upstream against the matter flow, the resulting wavelength drift mimics a much slower acceleration although the matter is moving fast. Additional to the DACs, a second type of recurrent structures is present in observed OB star spectra, the so-called modulations. In contrast to the DACs, these structures show a steep acceleration compatible with the theoretically predicted velocity law. We see only two possible consistent scenarios. Either, the wind is accelerated fast, and the modulations are formed in advected structures, while the DACs come from structures which are propagating upstream. Or, alternatively, steep and shallow velocity laws may co-exist at the same time in different spatial regions or directions of the wind.}, language = {en} } @article{KoesterkeHamannUrrutia2001, author = {Koesterke, Lars and Hamann, Wolf-Rainer and Urrutia, Tanya}, title = {Line-Profile Variability in the Wolf-Rayet Stars WR 135 and WR 111}, year = {2001}, abstract = {We have obtained time-resolved observations of line-profile variations of the two Wolf-Rayet stars WR 135 and WR 111. The spectra, taken during two consecutive nights, cover a broad range from 4470 to 6590 Ang. The profile variability of the C iii emission line at 5696 Ang in WR 135 is shown in detail. The principal difficulties to constrain the velocity law from the frequency drift of discrete spectral features is discussed, emphasizing the crucial dependence on the adopted location of the line-emission region, and the possible necessity to distinguish between the motion of structures and the flow of the matter. - Full access to the observational data is provided via anonymous file transfer.}, language = {en} } @article{HamannKoesterkeGraefener2002, author = {Hamann, Wolf-Rainer and Koesterke, Lars and Gr{\"a}fener, G{\"o}tz}, title = {Spectral analyses of Wolf-Rayet winds}, year = {2002}, abstract = {The analysis of Wolf-Rayet spectra requires adequate model atmospheres which treat the non-LTE radiation transfer in a spherically expanding medium. Present state-of-the-art calculations account for complex model atoms with, typically, a few hundred energy levels and a few thousand spectral lines of He and CNO elements. In the most recent version of our model code, blanketing by millions of lines from iron-group elements is also included. These models have been widely applied for the spectral analysis of WN stars in the Galaxy and LMC. WN spectra can be well reproduced in most cases. WC stars have not yet been analyzed comprehensively, because the agreement with observations becomes satisfactory only when line-blanketed models are applied. The introduction of inhomogeneities (clumping), although treated in a rough approximation, has significantly improved the fit between synthetic and observed spectra with respect to the electron-scattering wings of strong lines. The mass-loss rates obtained from spectral analyses become smaller by a factor 2-3 if clumping is accounted for. A pre-specified velocity law is adopted for our models, but the radiation pressure can be evaluated from our detailed calculation and can be compared a posteriori with the required wind acceleration. Surprisingly we find that the line-blanketed models are not far from being hydrodynamically consistent, thus indicating that radiation pressure is probably the main driving force for the mass-loss from WR stars.}, language = {en} } @article{FeldmeierShlosmanHamann2002, author = {Feldmeier, Achim and Shlosman, Isak and Hamann, Wolf-Rainer}, title = {Runaway acceleration of line-driven winds : the role of the outer boundary}, year = {2002}, abstract = {Observations and theory suggest that line driven winds from hot stars and luminous accretion disks adopt a unique, critical solution which corresponds to maximum mass loss rate. We analyze the numerical stability of the infinite family of shallow wind solutions, which resemble solar wind breezes, and their transition to the critical wind. Shallow solutions are sub-critical with respect to radiative (or Abbott) waves. These waves can propagate upstream through shallow winds at high speeds. If the waves are not accounted for in the Courant time step, numerical runaway results. The outer boundary condition is equally important for wind stability. Assuming pure outflow conditions, as is done in the literature, triggers runaway of shallow winds to the critical solution or to accretion flow.}, language = {en} } @article{KoesterkeHamannGraefener2002, author = {Koesterke, Lars and Hamann, Wolf-Rainer and Gr{\"a}fener, G{\"o}tz}, title = {Expanding atmospheres in non-LTE : Radiation transfer using short characteristics}, year = {2002}, abstract = {We present our technique for solving the equations of radiation transfer in spherically expanding atmospheres. To ensure an efficient treatment of the Thomson scattering, the mean intensity J is derived by solving the moment equations in turn with the angle-dependent transfer equation. The latter provide the Eddington factors. Two different methods for the solution of the angle dependent equation are compared. Thereby the integration along short characteristics turned out to be superior in our context over the classical differencing scheme. The method is the basis of a non-LTE code suitable for the atmospheres of hot stars with high mass-loss.}, language = {en} } @article{GraefenerKoesterkeHamann2002, author = {Gr{\"a}fener, G{\"o}tz and Koesterke, Lars and Hamann, Wolf-Rainer}, title = {Line-blanketed model atmospheres for WR star}, year = {2002}, abstract = {We describe the treatment of iron group line-blanketing in non-LTE model atmospheres for WR stars. As an example, a blanketed model for the early-type WC star WR 111 is compared to its un-blanketed counterpart. Blanketing affects the ionization structure and the emergent flux distribution of our models. The radiation pressure, as computed within our models, falls short by only a factor of two to provide the mechanical power of the WR wind.}, language = {en} } @article{KoesterkeHamann2002, author = {Koesterke, Lars and Hamann, Wolf-Rainer}, title = {[WC]-type CSPN : clumping and wind-driving}, year = {2002}, abstract = {Many Central Stars of Planetary Nebulae are very similar to massive Wolf-Rayet stars of the carbon sequence with respect to their spectra, chemical composition and wind properties. Therefore their study opens an additional way towards the understanding of the Wolf-Rayet phenomenon. While the study of Line Profile Variation will be difficult, espescially for the very compact early types, the comparision with other hydrogen-deficient Central Stars illuminates the driving mechanism of their winds. We speculate that at least two ingredients are needed. The ionization of their atmpospheres has to be stratified to enable multi-scattering processes and the amount of carbon and oxygen has to be high (more than a few percent by mass).}, language = {en} } @article{HamannGraefenerKoesterke2003, author = {Hamann, Wolf-Rainer and Gr{\"a}fener, G{\"o}tz and Koesterke, Lars}, title = {WR Central Stars}, isbn = {1-583-81148-6}, year = {2003}, abstract = {Wolf-Rayet type central stars have been analyzed with adequate model atmospheres. The obtained stellar parameters and chemical abundances allow for a discussion of their evolutionary origin.}, language = {en} } @article{GraefenerHamann2003, author = {Gr{\"a}fener, G{\"o}tz and Hamann, Wolf-Rainer}, title = {Spectral analysis of the LMC [WC] star SMP 61}, isbn = {1-583-81148-6}, year = {2003}, abstract = {HST UV and optical spectra of the early-type [WC] star SMP 61 in the LMC are analyzed by means of line blanketed non-LTE models for expanding atmospheres. The known distance to the LMC allows a reliable determination of the stellar parameters. The low iron surface abundance of the object possibly indicates a preceding evolution through a very late thermal pulse (VLTP).}, language = {en} } @article{PenaHamann2003, author = {Pena, M. and Hamann, Wolf-Rainer}, title = {The central star of the planetary nebula LMC-N66 : a massive accreting white dwarf?}, year = {2003}, abstract = {The central star of the PN LMC-N66 showed an impressive outburst in 1993 - 1994, returning to its initial conditions about 8 years later. Its spectrum resembles that of a WN4.5 star, being the only confirmed central star of planetary nebulae showing such a spectral type. Recent analysis for the central star parameters, performed by Hamann et al. (2003) is presented. They have found that the bolometric luminosity increased by a factor larger than 6, during the outburst. We discuss the possible scenarios which have been proposed to explain the exceptional stellar parameters and the outburst mechanism. The stellar characteristics and the morphology and kinematics of the planetary nebula suggest the presence of binary system (massive star with a less massive companion or, a white dwarf accreting matter in a close- binary system). These cases pose the least severe contradictions with observational constraints.}, language = {en} } @article{HamannGraefener2003, author = {Hamann, Wolf-Rainer and Gr{\"a}fener, G{\"o}tz}, title = {The surface composition of hydrogen-deficient Post-AGB stars}, year = {2003}, language = {en} } @phdthesis{HamannPenaGraefeneretal.2003, author = {Hamann, Wolf-Rainer and Pena, M. and Gr{\"a}fener, G{\"o}tz and Ruiz, M. T.}, title = {The central star of the planetary nebula N66 in the Large Magellanic Cloud : a detailed analysis of its dramatic evolution 1983 - 2000}, issn = {0004-6361}, year = {2003}, language = {en} } @article{HamannGraefenerKoesterke2003, author = {Hamann, Wolf-Rainer and Gr{\"a}fener, G{\"o}tz and Koesterke, Lars}, title = {Wolf-Rayet star parameters from spectral analyses}, isbn = {1-58381-133-8}, year = {2003}, abstract = {The Potsdam Non-LTE code for expanding atmospheres, which accounts for clumping and iron-line blanketing, has been used to establish a grid of model atmospheres for WC stars. A parameter degeneracy is discovered for early-type WC models which do not depend on the "stellar temperature". 15 galactic WC4-7 stars are analyzed, showing a very uniform carbon abundance (He:C=55:40) with only few exceptions.}, language = {en} } @article{GraefenerKoesterkeHamann2003, author = {Gr{\"a}fener, G{\"o}tz and Koesterke, Lars and Hamann, Wolf-Rainer}, title = {The WR population in CTS 1026}, isbn = {1-58381-133-8}, year = {2003}, abstract = {The blue compact H II galaxy CTS 1026 shows very strong WR emission features around 4686 AA and 5800 AA. We present high S/N optical spectra of the nucleus of this object. Byanalysis of the WR profile shapes, we determine the dominant spectral types and the WN/WC ratio in the starforming region. The ratio WR/O is determined via standard nebular diagnostics.}, language = {en} } @article{FeldmeierOskinovaHamannetal.2003, author = {Feldmeier, Achim and Oskinova, Lida and Hamann, Wolf-Rainer and Owocki, S. P.}, title = {Overloaded and fractured winds}, isbn = {1-58381-133-8}, year = {2003}, abstract = {We discuss the connection between wind overloading and discrete absorption components in P Cygni line profiles from O stars. Overloading can create horizontal plateaus in the radial wind speed that cause the extra absorption in the line profile. The upstream propagation speed of these velocity plateaus is analyzed. The second part of the paper deals with X-ray emission from O stars. X-ray line profiles observed with Chandra and XMM are often symmetric, contrary to what is expected for lines from a homogeneous wind. We discuss the influence on line symmetry of photon escape channels in a strongly clumped wind.}, language = {en} } @article{OskinovaFeldmeierHamann2003, author = {Oskinova, Lida and Feldmeier, Achim and Hamann, Wolf-Rainer}, title = {X-ray line profiles from structured stellar winds}, isbn = {1-58381-133-8}, year = {2003}, abstract = {Absorbing material compressed in a number of thin shells is effectively less opaque for X-rays than smoothly distributed gas. The calculated X-ray emission line profiles are red-shifted if the emission arises from the starward side of the shells.}, language = {en} } @article{PenaHamannRuiz2003, author = {Pena, M. and Hamann, Wolf-Rainer and Ruiz, M. T.}, title = {The LMC planetary nebula N66 revisited. Nebular kinematics and stellar models}, isbn = {1-583-81148-6}, year = {2003}, language = {en} } @article{FeldmeierOskinovaHamann2003, author = {Feldmeier, Achim and Oskinova, Lida and Hamann, Wolf-Rainer}, title = {X-ray line emission from a fragmented stellar wind}, year = {2003}, abstract = {We discuss X-ray line formation in dense O star winds. A random distribution of wind shocks is assumed to emit X-rays that are partially absorbed by cooler wind gas. The cool gas resides in highly compressed fragments oriented perpendicular to the radial flow direction. For fully opaque fragments, we find that the blueshifted part of X-ray line profiles remains flat-topped even after severe wind attenuation, whereas the red part shows a steep decline. These box- type, blueshifted profiles resemble recent Chandra observations of the O3 star zeta Pup. For partially transparent fragments, the emission lines become similar to those from a homogeneous wind.}, language = {en} } @article{HamannGraefener2003, author = {Hamann, Wolf-Rainer and Gr{\"a}fener, G{\"o}tz}, title = {The surface composition of hydrogen-deficient Post-AGB stars}, year = {2003}, abstract = {Most Central Stars of Planetary Nebulae exhibit a spectrum of a hydrogen-rich hot star with little or no stellar wind. About 20 \% of the CSPN, however, show entirely different spectra dominated by bright and broad emission lines of carbon, oxygen and helium, resembling the so-called Wolf-Rayet (WR) spectral class originally established for massive, Pop. I stars. These spectra indicate a hydrogen-deficient surface composition and, at the same time, strong mass-loss. As the WR spectra are formed entirely in a dense stellar wind, their spectral analysis requires adequate modelling. Corresponding Non-LTE model atmospheres have been developed in the last decade and became more and more sophisticated. They have been applied yet for analyzing almost all available WR-type CSPN spectra, establishing the stellar parameters. The obtained surface abundances are not understandable in terms of "classical" evolutionary calculations, but agree in principle with the advanced models for AGB evolution which account consistently for diffusive mixing and nuclear burning. The underabundance of iron, which we established in a recent study of a WC-type central star (LMC-SMP 61), gives indirect evidence that neutron-capture synthesis has converted Fe into s-process elements.}, language = {en} } @article{GraefenerHamann2003, author = {Gr{\"a}fener, G{\"o}tz and Hamann, Wolf-Rainer}, title = {Hydrodynamic model atmospheres for hot stars}, isbn = {1-58381-133-8}, year = {2003}, abstract = {Recent non-LTE models for expanding atmospheres, accounting for iron group line-blanketing and clumping, show a radiative acceleration which supplies a large part of the driving force of WR winds. Aiming at the calculation of fully consistent wind models, we developed a method to include the solution of the hydrodynamic equations into our code, taking into account the radiation pressure from the comoving-frame radiation transport. In the present work we discuss the resulting wind acceleration for WR- and O star models, and demonstrate the effects of clumping. In addition, we present a consistent hydrodynamic non-LTE model for the O-star zeta Puppis, which is calculated under consideration of complex model atoms of H, He, C, N, O, Si and the iron group elements. In its present state this model fails to reproduce the observed mass loss rate - probably due to still incomplete atomic data.}, language = {en} } @article{Hamann2003, author = {Hamann, Wolf-Rainer}, title = {Basic ali in moving atmospheres}, isbn = {1-5838-1131-1}, year = {2003}, abstract = {The non-LTE radiative transfer problem requires the consistent solution of two sets of equations: the radiative transfer equations, which couple the spatial points, and the equations of the statistical equilibrium, which couple the frequencies. The "Accelerated Lambda Iteration" (ALI) method allows for an iterative scheme, in which both sets of equations are solved in turn. For moving atmospheres the radiative transfer is preferably formulated in the co-moving frame-of-reference, which leads to a partial differential equation. "Classical" numerical solution methods are based on differencing schemes. For better numerical stability, we prefer "short characteristics" integration methods. Iron line blanketing is accounted for by means of the "superlevel" concept. In contrast to static atmospheres, the frequencies can not be re-ordered in the moving case because of the frequency coupling from Doppler shifts. One of our future aims is the coupling of elaborated radiative transfer calculations with the hydrodynamical equations in order to understand the driving of strong stellar winds, especially from Wolf-Rayet stars.}, language = {de} } @article{OskinovaIgnaceHamannetal.2003, author = {Oskinova, Lida and Ignace, Richard and Hamann, Wolf-Rainer and Pollock, A. M. T. and Brown, John C.}, title = {The conspicuous absence of X-ray emission from carbon-enriched Wolf-Rayet stars}, year = {2003}, abstract = {The carbon-rich WC5 star WR 114 was not detected during a 15.9 ksec XMM-Newton observation, implying an upper limit to the X-ray luminosity of Lx < 2.5 x 1030 ergs-1 and to the X-ray to bolometric luminosity ratio of Lx/Lbol < 4 x 10-9. This confirms indications from earlier less sensitive measurements that there has been no convincing X-ray detection of any single WC star. This lack of detections is reinforced by XMM-Newton and CHANDRA observations of WC stars. Thus the conclusion has to be drawn that the stars with radiatively-driven stellar winds of this particular class are insignificant X-ray sources. We attribute this to photoelectronic absorption by the stellar wind. The high opacity of the metal-rich and dense winds from WC stars puts the radius of optical depth unity at hundreds or thousands of stellar radii for much of the X-ray band. We believe that the essential absence of hot plasma so far out in the wind exacerbated by the large distances and correspondingly high ISM column densities makes the WC stars too faint to be detectable with current technology. The result also applies to many WC stars in binary systems, of which only about 20 \% are identified X-ray sources, presumably due to colliding winds.}, language = {en} } @article{StastinskaGraefenerPenaetal.2004, author = {Stastinska, G. and Gr{\"a}fener, G{\"o}tz and Pena, M. and Hamann, Wolf-Rainer and Koesterke, Lars and Szczerba, Ryszard}, title = {Comprehensive modelling of the planetary nebula LMC-SMP 61 and its [WC]-type central star}, issn = {0004-6361}, year = {2004}, abstract = {We present a comprehensive study of the Magellanic Cloud planetary nebula SMP 61 and of its nucleus, a Wolf- Rayet type star classified [WC 5-6]. The observational material consists of HST STIS spectroscopy and imaging, together with optical and UV spectroscopic data collected from the literature and infrared fluxes measured by IRAS. We have performed a detailed spectral analysis of the central star, using the Potsdam code for expanding atmospheres in non-LTE. For the central star we determine the following parameters: L-star = 10(3.96) L-., R-star = 0.42 R-., T-star = 87.5 kK, (M) over dot = 10(-6.12) M-. yr(-1), v(infinity) = 1400 km s(-1), and a clumping factor of D = 4. The elemental abundances by mass are X-He = 0.45, X-C = 0.52, X-N < 5 x 10(-5), X-O = 0.03, and X-Fe < 1 x 10(-4). The fluxes from the model stellar atmosphere were used to compute photoionization models of the nebula. All the available observations, within their error bars, were used to constrain these models. We find that the ionizing fluxes predicted by the stellar model are consistent with the fluxes needed by the photoionization model to reproduce the nebular emission, within the error margins. However, there are indications that the stellar model overestimates the number and hardness of Lyman continuum photons. The photoionization models imply a clumped density structure of the nebular material. The observed C III] lambda1909/C II lambda4267 line ratio implies the existence of carbon-rich clumps in the nebula. Such clumps are likely produced by stellar wind ejecta, possibly mixed with the nebular material. We discuss our results with regard to the stellar and nebular post-AGB evolution. The observed Fe-deficiency for the central star indicates that the material which is now visible on the stellar surface has been exposed to s-process nucleosynthesis during previous thermal pulses. The absence of nitrogen allows us to set an upper limit to the remaining H-envelope mass after a possible AGB final thermal pulse. Finally, we infer from the total amount of carbon detected in the nebula that the strong [WC] mass- loss may have been active only for a limited period during the post-AGB evolution}, language = {en} } @article{OskinovaFeldmeierHamann2004, author = {Oskinova, Lida and Feldmeier, Achim and Hamann, Wolf-Rainer}, title = {X-ray emission lines from inhomogeneous stellar winds}, issn = {0004-6361}, year = {2004}, abstract = {It is commonly adopted that X-rays from O stars are produced deep inside the stellar wind, and transported outwards through the bulk of the expanding matter which attenuates the radiation and affects the shape of emission line profiles. The ability of the X-ray observatories Chandra and XMM-Newton to resolve these lines spectroscopically provided a stringent test for the theory of the X-ray production. It turned out that none of the existing models was able to fit the observations consistently. The possible caveat of these models was the underlying assumption of a smooth stellar wind. Motivated by the evidence that the stellar winds are in fact structured, we present a 2-D numerical model of a stochastic, inhomogeneous wind. Small parcels of hot, X-ray emitting gas are permeated by cool, absorbing wind material which is compressed into thin shell fragments. Wind fragmentation alters the radiative transfer drastically, compared to homogeneous models of the same mass-loss rate. X-rays produced deep inside the wind, which would be totally absorbed in a homogeneous flow, can effectively escape from a fragmented wind. The wind absorption becomes wavelength independent if the individual fragments are optically thick. The X-ray line profiles are flat-topped in the blue part and decline steeply in the red part for the winds with a short acceleration zone. For the winds where the acceleration extends over significant distances, the lines can appear nearly symmetric and only slightly blueshifted, in contrast to the skewed, triangular line profiles typically obtained from homogeneous wind models of high optical depth. We show that profiles from a fragmented wind model can reproduce the observed line profiles from zeta Orionis. The present numerical modeling confirms the results from a previous study, where we derived analytical formulae from a statistical treatment}, language = {en} } @article{BrownBarrettOskinovaetal.2004, author = {Brown, John C. and Barrett, R. K. and Oskinova, Lida and Owocki, S. P. and Hamann, Wolf-Rainer and de Jong, J. A. and Kaper, L. and Henrichs, H. F.}, title = {Inference of hot star density stream properties from data on rotationally recurrent DACs}, issn = {0004-6361}, year = {2004}, abstract = {The information content of data on rotationally periodic recurrent discrete absorption components (DACs) in hot star wind emission lines is discussed. The data comprise optical depths tau(w,phi) as a function of dimensionless Doppler velocity w=(Deltalambda/lambda(0))(c/v(infinity)) and of time expressed in terms of stellar rotation angle phi. This is used to study the spatial distributions of density, radial and rotational velocities, and ionisation structures of the corotating wind streams to which recurrent DACs are conventionally attributed. The simplifying assumptions made to reduce the degrees of freedom in such structure distribution functions to match those in the DAC data are discussed and the problem then posed in terms of a bivariate relationship between tau(w, phi) and the radial velocity v(r)(r), transverse rotation rate Omega(r) and density rho(r, phi) structures of the streams. The discussion applies to cases where: the streams are equatorial; the system is seen edge on; the ionisation structure is approximated as uniform; the radial and transverse velocities are taken to be functions only of radial distance but the stream density is allowed to vary with azimuth. The last kinematic assumption essentially ignores the dynamical feedback of density on velocity and the relationship of this to fully dynamical models is discussed. The case of narrow streams is first considered, noting the result of Hamann et al. (2001) that the apparent acceleration of a narrow stream DAC is higher than the acceleration of the matter itself, so that the apparent slow acceleration of DACs cannot be attributed to the slowness of stellar rotation. Thus DACs either involve matter which accelerates slower than the general wind flow, or they are formed by structures which are not advected with the matter flow but propagate upstream (such as Abbott waves). It is then shown how, in the kinematic model approximation, the radial speed of the absorbing matter can be found by inversion of the apparent acceleration of the narrow DAC, for a given rotation law. The case of broad streams is more complex but also more informative. The observed tau(w,phi) is governed not only by v(r)(r) and Omega(r) of the absorbing stream matter but also by the density profile across the stream, determined by the azimuthal (phi(0)) distribution function F- 0(phi(0)) of mass loss rate around the stellar equator. When F-0(phi(0)) is fairly wide in phi(0), the acceleration of the DAC peak tau(w, phi) in w is generally slow compared with that of a narrow stream DAC and the information on v(r)(r), Omega(r) and F-0(phi(0)) is convoluted in the data tau(w, phi). We show that it is possible, in this kinematic model, to recover by inversion, complete information on all three distribution functions v(r)(r), Omega(r) and F- 0(phi(0)) from data on tau(w, phi) of sufficiently high precision and resolution since v(r)(r) and Omega(r) occur in combination rather than independently in the equations. This is demonstrated for simulated data, including noise effects, and is discussed in relation to real data and to fully hydrodynamic models}, language = {en} } @article{HamannGraefener2004, author = {Hamann, Wolf-Rainer and Gr{\"a}fener, G{\"o}tz}, title = {Grids of model spectra for WN stars, ready for use}, issn = {0004-6361}, year = {2004}, abstract = {Grids of model atmospheres for Wolf-Rayet stars of the nitrogen sequence (WN subclass) are presented. The calculations account for the expansion of the atmosphere, non-LTE, clumping, and line blanketing from iron-group elements. Observed spectra of single Galactic WN stars can in general be reproduced consistently by this generation of models. The parameters of the presented model grids cover the whole relevant range of stellar temperatures and mass-loss rates. We point out that there is a degeneracy of parameters for very thick winds; their spectra tend to depend only on the ratio \$L/{dot M}^{4/3}\$. Abundances of the calculated grids are for Galactic WN stars without hydrogen and with 20\% hydrogen (by mass), respectively. Model spectra and fluxes are available via internet (http://www.astro.physik.uni- potsdam.de/PoWR.html).}, language = {en} } @article{HamannGraefener2004, author = {Hamann, Wolf-Rainer and Gr{\"a}fener, G{\"o}tz}, title = {A temperature correction method for expanding atmospheres}, year = {2004}, language = {en} } @article{PenaPeimbertHamannetal.2004, author = {Pena, M and Peimbert, A. and Hamann, Wolf-Rainer and Ruiz, M. T. and Peimbert, M.}, title = {The extraordinary planetary nebula N66 in the LMC}, isbn = {3-12-283174-0}, year = {2004}, abstract = {Morphology of the planetary nebula LMC-N66 (ionized by a [WN] star) indicates that the nebula is a multipolar object with a very narrow waist. It shows several jets, knots and filaments in opposite directions from the central star. A couple of twisted long filaments could be interpreted as due to point-symmetric type ejection. If such is the case, the progenitor would be a binary precessing system. High resolution spectroscopy shows that most of the material is approaching or receding from the star. However the line profiles are very complex, showing several components at different velocities. Our high resolution spectroscopic data show that the different structures (knots, filaments, ...) present different radial velocities spreading from 240 to more than 400 km/s. The system velocity is 300 km/s. There are high velocity knots located to the north of the central star, moving at more than 100 km/s relative to the system velocity.}, language = {en} } @article{EvansSmarttLeeetal.2005, author = {Evans, C. J. and Smartt, S. J. and Lee, J. K. and Lennon, D. J. and Kaufer, A. and Dufton, P. L. and Trundle, C. and Herrero, A. and Simon D{\´i}az, Sergio and de Koter, A. and Hamann, Wolf-Rainer and Hendry, M. A. and Hunter, I. and Irwin, M. J. and Korn, A. J. and Kudritzki, R. P. and Langer, Norbert and Mokiem, M. R. and Najarro, F. and Pauldrach, A. W. A. and Przybilla, Norbert and Puls, J. and Ryans, R. S. I. and Urbaneja, M. A. and Venn, K. A. and Villamariz, M. R.}, title = {The VLT-FLAMES survey of massive stars : Observations in the Galactic clusters NGC3293, NGC4755 and NGC6611}, year = {2005}, abstract = {We introduce a new survey of massive stars in the Galaxy and the Magellanic Clouds using the Fibre Large Array Multi- Element Spectrograph ( FLAMES) instrument at the Very Large Telescope ( VLT). Here we present observations of 269 Galactic stars with the FLAMES- Giraffe Spectrograph ( R similar or equal to 25 000), in fields centered on the open clusters NGC3293, NGC4755 and NGC6611. These data are supplemented by a further 50 targets observed with the Fibre- Fed Extended Range Optical Spectrograph ( FEROS, R = 48 000). Following a description of our scientific motivations and target selection criteria, the data reduction methods are described; of critical importance the FLAMES reduction pipeline is found to yield spectra that are in excellent agreement with less automated methods. Spectral classifications and radial velocity measurements are presented for each star, with particular attention paid to morphological peculiarities and evidence of binarity. These observations represent a significant increase in the known spectral content of NGC3293 and NGC4755, and will serve as standards against which our subsequent FLAMES observations in the Magellanic Clouds will be compared}, language = {en} } @article{GraefenerHamann2005, author = {Gr{\"a}fener, G{\"o}tz and Hamann, Wolf-Rainer}, title = {Hydrodynamic model atmospheres for WR stars : self-consistent modeling of a WC star wind}, issn = {0004-6361}, year = {2005}, abstract = {We present the first non-LTE atmosphere models for WRstars that incorporate a self-consistent solution of the hydrodynamic equations. The models take iron-group line-blanketing and clumping into account, and compute the hydrodynamic structure of a radiatively driven wind consistently with the non-LTE radiation transport in the co-moving frame. We construct a self-consistent wind model that reproduces all observed properties of an early-type WCstar (WC5). We find that the WR-type mass-loss is initiated at high optical depth by the so-called "Hot Iron Bump" opacities (Fe IX- XVI). The acceleration of the outer wind regions is due to iron-group ions of lower excitation in combination with C and O. Consequently, the wind structure shows two acceleration regions, one close to the hydrostatic wind base in the optically thick part of the atmosphere, and another farther out in the wind. In addition to the radiative acceleration, the "Iron Bump" opacities are responsible for an intense heating of deep atmospheric layers. We find that the observed narrow O VI emission lines in the optical spectra of WC stars originate from this region. From their dependence on the clumping factor we gain important information about the location where the density inhomogeneities in WR-winds start to develop}, language = {en} } @article{SteinkeOskinovaHamannetal.2015, author = {Steinke, M. and Oskinova, Lida and Hamann, Wolf-Rainer and Sander, A.}, title = {The Wolf-Rayet stars WR102c and 102ka and their isolation}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88503}, pages = {365}, year = {2015}, abstract = {While the majority of very massive stars is clearly found in clusters, there are also very massive objects not associated with any cluster, suggesting they may have been born in isolation. In order to gain more insights, we studied the regions around two WR stars in the Galactic Center region. To understand the nature of the potential cluster around massive stars, photometry alone is not sufficient. We therefore used the ESO VLT/SINFONI integral field spectrograph to obtain photometry and spectra for the whole region around our two candidate stars. In total, more than 60 stars have been found and assigned a spectral type.}, language = {en} } @article{HuenemoerderGayleyHamannetal.2015, author = {Huenemoerder, D. and Gayley, K. and Hamann, Wolf-Rainer and Ignace, R. and Nichols, J. and Oskinova, Lida and Pollock, A. M. T. and Schulz, N.}, title = {High Resolution X-Ray Spectra of WR 6}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88236}, pages = {301 -- 304}, year = {2015}, abstract = {As WR 6 is a putatively single WN4 star, and is relatively bright (V = 6.9), it is an ideal case for studying the wind mechanisms in these extremely luminous stars. To obtain higher resolution spectra at higher energy (above 1 keV) than previously obtained with the XMM/Newton RGS, we have observed WR 6 with the Chandra High Energy Transmission Grating Spectrometer for 450 ks. We have resolved emission lines of S, Si, Mg, Ne, and Fe, which all show a "fin"-shaped prole, characteristic of a self-absorbed uniformly expanding shell. Steep blue edges gives robust maximal expansion velocities of about 2000 km/s, somewhat larger than the 1700km/s derived from UV lines. The He-like lines all indicate that X-ray emitting plasmas are far from the photosphere - even at the higher energies where opacity is lowest { as was also the case for the longer wavelength lines observed with XMM-Newton/RGS. Abundances determined from X-ray spectral modeling indicate enhancements consistent with nucleosynthesis. The star was also variable in X-rays and in simultaneous optical photometry obtained with Chandra aspect camera, but not coherently with the optically known period of 3.765 days.}, language = {en} } @article{TodtHamann2015, author = {Todt, Helge Tobias and Hamann, Wolf-Rainer}, title = {Wolf-Rayet central stars of planetary nebulae}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88147}, pages = {253 -- 258}, year = {2015}, abstract = {A significant number of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient, showing a chemical composition of helium, carbon, and oxygen. Most of them exhibit Wolf-Rayet-like emission line spectra, similar to those of the massive WC Pop I stars, and are therefore classified as of spectral type [WC]. In the last years, CSPNe of other Wolf-Rayet spectral subtypes have been identified, namely PB 8, which is of spectral type [WN/C], and IC 4663 and Abell 48, which are of spectral type [WN]. We review spectral analyses of Wolf-Rayet type central stars of different evolutionary stages and discuss the results in the context of stellar evolution. Especially we consider the question of a common evolutionary channel for [WC] stars. The constraints on the formation of [WN] or [WC/N] subtype stars will also be addressed.}, language = {en} } @article{ShenarHamannTodt2015, author = {Shenar, Tomer and Hamann, Wolf-Rainer and Todt, Helge Tobias}, title = {The impact of rotation on the line profiles of Wolf-Rayet stars}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88008}, pages = {193 -- 196}, year = {2015}, abstract = {The distribution of angular momentum in massive stars is a critical component of their evolution, yet not much is known on the rotation velocities of Wolf-Rayet stars. There are various indications that rapidly rotating Wolf-Rayet stars should exist. Unfortunately, due to their expanding atmospheres, rotational velocities of Wolf-Rayet stars are very difficult to measure. In this work, we model the effects of rotation on the atmospheres of Wolf-Rayet stars by implementing a 3D integration scheme in the PoWR code. We further investigate whether the peculiar spectra of five Wolf-Rayet stars may imply rapid rotation, infer the corresponding rotation parameters, and discuss the implications of our results. We find that rotation helps to reproduce the unique spectra analyzed here. However, if rotation is indeed involved, the inferred rotational velocities at the stellar surface are large (∼ 200 km/s), and the implied co-rotation radii (∼ 10R∗) suggest the existence of very strong photospheric magnetic fields (∼ 20 kG).}, language = {en} } @article{SanderHamannHainichetal.2015, author = {Sander, A. and Hamann, Wolf-Rainer and Hainich, Rainer and Shenar, Tomer and Todt, Helge Tobias}, title = {Hydrodynamic modeling of massive star atmospheres}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87857}, pages = {139 -- 142}, year = {2015}, abstract = {In the last decades, stellar atmosphere codes have become a key tool in understanding massive stars, including precise calculations of stellar and wind parameters, such as temperature, massloss rate, and terminal wind velocity. Nevertheless, for these models the hydrodynamic equation is not solved in the wind. Motivated by the results of the CAK theory, the models typically use a beta velocity law, which however turns out not to be adequate for stars with very strong winds, and treat the mass-loss rate as a free parameter. In a new branch of the Potsdam Wolf-Rayet model atmosphere (PoWR) code, we solve the hydrodynamic equation consistently throughout the stellar atmosphere. The PoWR code performs the calculation of the radiative force without approximations (e.g. Sobolev). We show the impact of hydrodynamically consistent modelling on OB and WR stars in comparison to conventional models and discuss the obtained velocity fields and their impact on the observed spectral lines.}, language = {en} } @article{KubatovaHamannTodtetal.2015, author = {Kub{\´a}tov{\´a}, Brankica and Hamann, Wolf-Rainer and Todt, Helge Tobias and Sander, A. and Steinke, M. and Hainich, Rainer and Shenar, Tomer}, title = {Macroclumping in WR 136}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87823}, pages = {125 -- 128}, year = {2015}, abstract = {Macroclumping proved to resolve the discordance between different mass-loss rate diagnostics for O-type stars, in particular between Hα and the P v resonance lines. In this paper, we report first results from a corresponding investigation for WR stars. We apply our detailed 3-D Monte Carlo (MC) line formation code to the P v resonance doublet and show, for the Galactic WNL star WR136, that macroclumping is require to bring this line in accordance with the mass-loss rate derived from the emission-line spectrum.}, language = {en} } @article{HainichRuehlingPasemannetal.2015, author = {Hainich, Rainer and R{\"u}hling, U. and Pasemann, D. and Hamann, Wolf-Rainer}, title = {The WN population in the Magellanic Clouds}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87806}, pages = {117 -- 120}, year = {2015}, abstract = {A detailed and comprehensive study of the Wolf-Rayet stars of the nitrogen sequence (WN stars) in the Small Magellanic Cloud (SMC) and the Large Magellanic Cloud (LMC) is presented. We derived the fundamental stellar and wind parameters for more than 100 massive stars, encompassing almost the whole WN population in the Magellanic Clouds (MCs). The observations are fitted with synthetic spectra, using the PotsdamWolf-Rayet model atmosphere code (PoWR). For this purpose, large grids of line-blanket models for different metallicities have been calculated, covering a wide range of stellar temperatures, mass-loss rates, and hydrogen abundances. Our comprehensive sample facilitates statistical studies of the WN properties in the MCs without selection bias. To investigate the impact of the low LMC metallicity and the even lower SMC metallicity, we compare our new results to previous analyses of the Galactic WN population and the late type WN stars from M31. Based on these studies we derived an empirical relation between the WN mass-loss rates and the metallicity. Current stellar evolution tracks, even when accounting for rotationally induced mixing, partly fail to reproduce the observed ranges of luminosities and initial masses.}, language = {en} } @article{Hamann2015, author = {Hamann, Wolf-Rainer}, title = {Wind models and spectral analyses}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87748}, pages = {91 -- 96}, year = {2015}, abstract = {The emission-line dominated spectra of Wolf-Rayet stars are formed in expanding layers of their atmosphere, i.e. in their strong stellar wind. Adequate modeling of such spectra has to face a couple of difficulties. Because of the supersonic motion, the radiative transfer is preferably formulated in the co-moving frame. The strong deviations from local thermodynamical equilibrium (LTE) require to solve the equations of statistical equilibrium for the population numbers, accounting for many hundred atomic energy levels and thousands of line transitions. Moreover, millions of lines from iron-group elements must be taken into account for their blanketing effect. Model atmospheres of the described kind can reproduce the observed WR spectra satisfyingly, and have been widely applied for corresponding spectral analyses.}, language = {en} } @inproceedings{OskinovaHamannFeldmeier2007, author = {Oskinova, Lida and Hamann, Wolf-Rainer and Feldmeier, Achim}, title = {X-raying clumped stellar winds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18133}, year = {2007}, abstract = {X-ray spectroscopy is a sensitive probe of stellar winds. X-rays originate from optically thin shock-heated plasma deep inside the wind and propagate outwards throughout absorbing cool material. Recent analyses of the line ratios from He-like ions in the X-ray spectra of O-stars highlighted problems with this general paradigm: the measured line ratios of highest ions are consistent with the location of the hottest X-ray emitting plasma very close to the base of the wind, perhaps indicating the presence of a corona, while measurements from lower ions conform with the wind-embedded shock model. Generally, to correctly model the emerging Xray spectra, a detailed knowledge of the cool wind opacities based on stellar atmosphere models is prerequisite. A nearly grey stellar wind opacity for the X-rays is deduced from the analyses of high-resolution X-ray spectra. This indicates that the stellar winds are strongly clumped. Furthermore, the nearly symmetric shape of X-ray emission line profiles can be explained if the wind clumps are radially compressed. In massive binaries the orbital variations of X-ray emission allow to probe the opacity of the stellar wind; results support the picture of strong wind clumping. In high-mass X-ray binaries, the stochastic X-ray variability and the extend of the stellar-wind part photoionized by X-rays provide further strong evidence that stellar winds consist of dense clumps.}, language = {en} } @inproceedings{FeldmeierHamannRaetzeletal.2007, author = {Feldmeier, Achim and Hamann, Wolf-Rainer and R{\"a}tzel, D. and Oskinova, Lida}, title = {Hydrodynamic simulations of clumps}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17975}, year = {2007}, abstract = {Clumps in hot star winds can originate from shock compression due to the line driven instability. One-dimensional hydrodynamic simulations reveal a radial wind structure consisting of highly compressed shells separated by voids, and colliding with fast clouds. Two-dimensional simulations are still largely missing, despite first attempts. Clumpiness dramatically affects the radiative transfer and thus all wind diagnostics in the UV, optical, and in X-rays. The microturbulence approximation applied hitherto is currently superseded by a more sophisticated radiative transfer in stochastic media. Besides clumps, i.e. jumps in the density stratification, so-called kinks in the velocity law, i.e. jumps in dv/dr, play an eminent role in hot star winds. Kinks are a new type of radiative-acoustic shock, and propagate at super-Abbottic speed.}, language = {en} } @inproceedings{HamannOskinovaFeldmeier2007, author = {Hamann, Wolf-Rainer and Oskinova, Lida and Feldmeier, Achim}, title = {Spectrum formation in clumpy stellar winds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17838}, year = {2007}, abstract = {Modeling expanding atmospheres is a difficult task because of the extreme non-LTE situation, the need to account for complex model atoms, especially for the iron-group elements with their millions of lines, and because of the supersonic expansion. Adequate codes have been developed e.g. by Hillier (CMFGEN), the Munich group (Puls, Pauldrach), and in Potsdam (PoWR code, Hamann et al.). While early work was based on the assumption of a smooth and homogeneous spherical stellar wind, the need to account for clumping became obvious about ten years ago. A relatively simple first-order clumping correction was readily implemented into the model codes. However, its simplifying assumptions are severe. Most importantly, the clumps are taken to be optically thin at all frequencies ("microclumping"). We discuss the consequences of this approximation and describe an approach to account for optically thick clumps ("macroclumping"). First results demonstrate that macroclumping can generally reduce the strength of spectral features, depending on their optical thickness. The recently reported discrepancy between the Hα diagnostic and the Pv resonance lines in O star spectra can be resolved without decreasing the mass-loss rates, when macroclumping is taken into account.}, language = {en} } @inproceedings{TodtHamannGraefener2007, author = {Todt, Helge Tobias and Hamann, Wolf-Rainer and Gr{\"a}fener, G.}, title = {Clumping in [WC]-type Central Stars from electron-scattering line wings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17711}, year = {2007}, abstract = {While there is strong evidence for clumping in the winds of massive hot stars, very little is known about clumping in the winds from Central Stars. We have checked [WC]-type CSPN winds for clumping by inspecting the electron-scattering line wings. At least for three stars we found indications for wind inhomogeneities.}, language = {en} }