@unpublished{AbedSchulze2009, author = {Abed, Jamil and Schulze, Bert-Wolfgang}, title = {Edge-degenerate families of ΨDO's on an infinite cylinder}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-30365}, year = {2009}, abstract = {We establish a parameter-dependent pseudo-differential calculus on an infinite cylinder, regarded as a manifold with conical exits to infinity. The parameters are involved in edge-degenerate form, and we formulate the operators in terms of operator-valued amplitude functions.}, language = {en} } @unpublished{AbedSchulze2008, author = {Abed, Jamil and Schulze, Bert-Wolfgang}, title = {Operators with corner-degenerate symbols}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-30299}, year = {2008}, abstract = {We establish elements of a new approch to ellipticity and parametrices within operator algebras on a manifold with higher singularities, only based on some general axiomatic requirements on parameter-dependent operators in suitable scales of spaces. The idea is to model an iterative process with new generations of parameter-dependent operator theories, together with new scales of spaces that satisfy analogous requirements as the original ones, now on a corresponding higher level. The "full" calculus is voluminous; so we content ourselves here with some typical aspects such as symbols in terms of order reducing families, classes of relevant examples, and operators near the conical exit to infinity.}, language = {en} } @unpublished{BuchholzSchulze1998, author = {Buchholz, Thilo and Schulze, Bert-Wolfgang}, title = {Volterra operators and parabolicity : anisotropic pseudo-differential operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25231}, year = {1998}, abstract = {Parabolic equations on manifolds with singularities require a new calculus of anisotropic pseudo-differential operators with operator-valued symbols. The paper develops this theory along the lines of sn abstract wedge calculus with strongly continuous groups of isomorphisms on the involved Banach spaces. The corresponding pseodo-diferential operators are continuous in anisotropic wedge Sobolev spaces, and they form an alegbra. There is then introduced the concept of anisotropic parameter-dependent ellipticity, based on an order reduction variant of the pseudo-differential calculus. The theory is appled to a class of parabolic differential operators, and it is proved the invertibility in Sobolev spaces with exponential weights at infinity in time direction.}, language = {en} } @unpublished{CalvoSchulze2005, author = {Calvo, D. and Schulze, Bert-Wolfgang}, title = {Operators on corner manifolds with exit to infinity}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29753}, year = {2005}, abstract = {We study (pseudo-)differential operators on a manifold with edge Z, locally modelled on a wedge with model cone that has itself a base manifold W with smooth edge Y . The typical operators A are corner degenerate in a specific way. They are described (modulo 'lower order terms') by a principal symbolic hierarchy σ(A) = (σ ψ(A), σ ^(A), σ ^(A)), where σ ψ is the interior symbol and σ ^(A)(y, η), (y, η) 2 T*Y \ 0, the (operator-valued) edge symbol of 'first generation', cf. [15]. The novelty here is the edge symbol σ^ of 'second generation', parametrised by (z, Ϛ) 2 T*Z \ 0, acting on weighted Sobolev spaces on the infinite cone with base W. Since such a cone has edges with exit to infinity, the calculus has the problem to understand the behaviour of operators on a manifold of that kind. We show the continuity of corner-degenerate operators in weighted edge Sobolev spaces, and we investigate the ellipticity of edge symbols of second generation. Starting from parameter-dependent elliptic families of edge operators of first generation, we obtain the Fredholm property of higher edge symbols on the corresponding singular infinite model cone.}, language = {en} } @unpublished{CoriascoSchulze2002, author = {Coriasco, Sandro and Schulze, Bert-Wolfgang}, title = {Edge problems on configurations with model cones of different dimensions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26438}, year = {2002}, abstract = {Elliptic equations on configurations W = W1 ∪ ... ∪ Wn with edge Y and components Wj of different dimension can be treated in the frame of pseudo-differential analysis on manifolds with geometric singularities, here, edges. Starting from edge-degenerate operators on Wj, j = 1, ..., N, we construct an algebra with extra "transmission" conditions on Y that satisfy an analogue of the Shapiro-Lopatinskij condition. Ellipticity refers to a two-component symbolic hierarchy with an interior and an edge part; the latter one is operator-valued, operating on the union of different dimensional model cones. We construct parametrices within our calculus, where exchange of information between the various components is encoded in Green and Mellin operators that are smoothing on W\Y. Moreover, we obtain regularity of solutions in weighted edge spaces with asymptotics.}, language = {en} } @unpublished{DeDonnoSchulze2003, author = {De Donno, G. and Schulze, Bert-Wolfgang}, title = {Meromorphic symbolic structures for boundary value problems on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26570}, year = {2003}, abstract = {We investigate the ideal of Green and Mellin operators with asymtotics for a manifold with edge-corner singularities and boundary which belongs to the structure of parametrices of elliptic boundary value problems on a configuration with corners whose base manifolds have edges.}, language = {en} } @unpublished{DinesHarutjunjanSchulze2003, author = {Dines, Nicoleta and Harutjunjan, Gohar and Schulze, Bert-Wolfgang}, title = {The Zaremba problem in edge Sobolev spaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26615}, year = {2003}, abstract = {Mixed elliptic boundary value problems are characterised by conditions which have a jump along an interface of codimension 1 on the boundary. We study such problems in weighted edge Sobolev spaces and show the Fredholm property and the existence of parametrices under additional conditions of trace and potential type on the interface. Our methods from the calculus of boundary value problems on a manifold with edges will be illustrated by the Zaremba problem and other mixed problems for the Laplace operator.}, language = {en} } @unpublished{DinesLiuSchulze2004, author = {Dines, Nicoleta and Liu, X. and Schulze, Bert-Wolfgang}, title = {Edge quantisation of elliptic operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26838}, year = {2004}, abstract = {The ellipticity of operators on a manifold with edge is defined as the bijectivity of the components of a principal symbolic hierarchy σ = (σψ, σ∧), where the second component takes value in operators on the infinite model cone of the local wedges. In general understanding of edge problems there are two basic aspects: Quantisation of edge-degenerate operators in weighted Sobolev spaces, and verifying the elliptcity of the principal edge symbol σ∧ which includes the (in general not explicitly known) number of additional conditions on the edge of trace and potential type. We focus here on these queations and give explicit answers for a wide class of elliptic operators that are connected with the ellipticity of edge boundary value problems and reductions to the boundary. In particular, we study the edge quantisation and ellipticity for Dirichlet-Neumann operators with respect to interfaces of some codimension on a boundary. We show analogues of the Agranovich-Dynin formula for edge boundary value problems, and we establish relations of elliptic operators for different weights, via the spectral flow of the underlying conormal symbols.}, language = {en} } @unpublished{DinesSchulze2003, author = {Dines, Nicoleta and Schulze, Bert-Wolfgang}, title = {Mellin-edge representations of elliptic operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26627}, year = {2003}, abstract = {We construct a class of elliptic operators in the edge algebra on a manifold M with an embedded submanifold Y interpreted as an edge. The ellipticity refers to a principal symbolic structure consisting of the standard interior symbol and an operator-valued edge symbol. Given a differential operator A on M for every (sufficiently large) s we construct an associated operator As in the edge calculus. We show that ellipticity of A in the usual sense entails ellipticity of As as an edge operator (up to a discrete set of reals s). Parametrices P of A then correspond to parametrices Ps of As, interpreted as Mellin-edge representations of P.}, language = {en} } @unpublished{EgorovKondratievSchulze2004, author = {Egorov, Jurij V. and Kondratiev, V. A. and Schulze, Bert-Wolfgang}, title = {On the completeness of root functions of elliptic boundary problems in a domain with conical points on the boundary}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26773}, year = {2004}, abstract = {Contents: 1 Introduction 2 Definitions 3 Rays of minimal growth 4 Proof of Theorem 2. 5 The growth of the resolvent 6 Proof of Theorem 3. 7 The completeness of root functions 8 Some generalizations}, language = {en} } @unpublished{EgorovKondratievSchulze2001, author = {Egorov, Yu. and Kondratiev, V. and Schulze, Bert-Wolfgang}, title = {On completeness of eigenfunctions of an elliptic operator on a manifold with conical points}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25937}, year = {2001}, abstract = {Contents: 1 Introduction 2 Definitions 3 Rays of minimal growth 4 Completeness of root functions}, language = {en} } @unpublished{FedosovSchulzeTarkhanov1999, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {A general index formula on tropic manifolds with conical points}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25501}, year = {1999}, abstract = {We solve the index problem for general elliptic pseudodifferential operators on toric manifolds with conical points.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov1998, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {A remark on the index of symmetric operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25169}, year = {1998}, abstract = {We introduce a natural symmetry condition for a pseudodifferential operator on a manifold with cylindrical ends ensuring that the operator admits a doubling across the boundary. For such operators we prove an explicit index formula containing, apart from the Atiyah-Singer integral, a finite number of residues of the logarithmic derivative of the conormal symbol.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov1997, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {The index of elliptic operators on manifolds with conical points}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25096}, year = {1997}, abstract = {For general elliptic pseudodifferential operators on manifolds with singular points, we prove an algebraic index formula. In this formula the symbolic contributions from the interior and from the singular points are explicitly singled out. For two-dimensional manifolds, the interior contribution is reduced to the Atiyah-Singer integral over the cosphere bundle while two additional terms arise. The first of the two is one half of the 'eta' invariant associated to the conormal symbol of the operator at singular points. The second term is also completely determined by the conormal symbol. The example of the Cauchy-Riemann operator on the complex plane shows that all the three terms may be non-zero.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov1998, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {The index of higher order operators on singular surfaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25127}, year = {1998}, abstract = {The index formula for elliptic pseudodifferential operators on a two-dimensional manifold with conical points contains the Atiyah-Singer integral as well as two additional terms. One of the two is the 'eta' invariant defined by the conormal symbol, and the other term is explicitly expressed via the principal and subprincipal symbols of the operator at conical points. In the preceding paper we clarified the meaning of the additional terms for first-order differential operators. The aim of this paper is an explicit description of the contribution of a conical point for higher-order differential operators. We show that changing the origin in the complex plane reduces the entire contribution of the conical point to the shifted 'eta' invariant. In turn this latter is expressed in terms of the monodromy matrix for an ordinary differential equation defined by the conormal symbol.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov1997, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {On the index formula for singular surfaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25116}, year = {1997}, abstract = {In the preceding paper we proved an explicit index formula for elliptic pseudodifferential operators on a two-dimensional manifold with conical points. Apart from the Atiyah-Singer integral, it contains two additional terms, one of the two being the 'eta' invariant defined by the conormal symbol. In this paper we clarify the meaning of the additional terms for differential operators.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov2003, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {On index theorem for symplectic orbifolds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26550}, year = {2003}, abstract = {We give an explicit construction of the trace on the algebra of quantum observables on a symplectic orbifold and propose an index formula.}, language = {en} } @unpublished{FladSchneiderSchulze2007, author = {Flad, Heinz-J{\"u}rgen and Schneider, Reinhold and Schulze, Bert-Wolfgang}, title = {Asymptotic regularity of solutions of Hartree-Fock equations with coulomb potential}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-30268}, year = {2007}, abstract = {We study the asymptotic regularity of solutions of Hartree-Fock equations for Coulomb systems. In order to deal with singular Coulomb potentials, Fock operators are discussed within the calculus of pseudo-differential operators on conical manifolds. First, the non-self-consistent-field case is considered which means that the functions that enter into the nonlinear terms are not the eigenfunctions of the Fock operator itself. We introduce asymptotic regularity conditions on the functions that build up the Fock operator which guarantee ellipticity for the local part of the Fock operator on the open stretched cone R+ × S². This proves existence of a parametrix with a corresponding smoothing remainder from which it follows, via a bootstrap argument, that the eigenfunctions of the Fock operator again satisfy asymptotic regularity conditions. Using a fixed-point approach based on Cances and Le Bris analysis of the level-shifting algorithm, we show via another bootstrap argument, that the corresponding self-consistent-field solutions of the Hartree-Fock equation have the same type of asymptotic regularity.}, language = {en} } @unpublished{HarutjunjanSchulze2005, author = {Harutjunjan, G. and Schulze, Bert-Wolfgang}, title = {Conormal symbols of mixed elliptic problems with singular interfaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29885}, year = {2005}, abstract = {Mixed elliptic problems are characterised by conditions that have a discontinuity on an interface of the boundary of codimension 1. The case of a smooth interface is treated in [3]; the investigation there refers to additional interface conditions and parametrices in standard Sobolev spaces. The present paper studies a necessary structure for the case of interfaces with conical singularities, namely, corner conormal symbols of such operators. These may be interpreted as families of mixed elliptic problems on a manifold with smooth interface. We mainly focus on second order operators and additional interface conditions that are holomorphic in an extra parameter. In particular, for the case of the Zaremba problem we explicitly obtain the number of potential conditions in this context. The inverses of conormal symbols are meromorphic families of pseudo-differential mixed problems referring to a smooth interface. Pointwise they can be computed along the lines [3].}, language = {en} } @unpublished{HarutjunjanSchulze2002, author = {Harutjunjan, G. and Schulze, Bert-Wolfgang}, title = {Reduction of orders in boundary value problems without the transmission property}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26220}, year = {2002}, abstract = {Given an algebra of pseudo-differential operators on a manifold, an elliptic element is said to be a reduction of orders, if it induces isomorphisms of Sobolev spaces with a corresponding shift of smoothness. Reductions of orders on a manifold with boundary refer to boundary value problems. We consider smooth symbols and ellipticity without additional boundary conditions which is the relevant case on a manifold with boundary. Starting from a class of symbols that has been investigated before for integer orders in boundary value problems with the transmission property we study operators of arbitrary real orders that play a similar role for operators without the transmission property. Moreover, we show that order reducing symbols have the Volterra property and are parabolic of anisotropy 1; analogous relations are formulated for arbitrary anisotropies. We finally investigate parameter-dependent operators, apply a kernel cut-off construction with respect to the parameter and show that corresponding holomorphic operator-valued Mellin symbols reduce orders in weighted Sobolev spaces on a cone with boundary.}, language = {en} } @unpublished{HarutjunjanSchulze2004, author = {Harutjunjan, Gohar and Schulze, Bert-Wolfgang}, title = {The Zaremba problem with singular interfaces as a corner boundary value problem}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26855}, year = {2004}, abstract = {We study mixed boundary value problems for an elliptic operator A on a manifold X with boundary Y , i.e., Au = f in int X, T±u = g± on int Y±, where Y is subdivided into subsets Y± with an interface Z and boundary conditions T± on Y± that are Shapiro-Lopatinskij elliptic up to Z from the respective sides. We assume that Z ⊂ Y is a manifold with conical singularity v. As an example we consider the Zaremba problem, where A is the Laplacian and T- Dirichlet, T+ Neumann conditions. The problem is treated as a corner boundary value problem near v which is the new point and the main difficulty in this paper. Outside v the problem belongs to the edge calculus as is shown in [3]. With a mixed problem we associate Fredholm operators in weighted corner Sobolev spaces with double weights, under suitable edge conditions along Z \ {v} of trace and potential type. We construct parametrices within the calculus and establish the regularity of solutions.}, language = {en} } @unpublished{HarutjunjanSchulze2002, author = {Harutjunjan, Gohar and Schulze, Bert-Wolfgang}, title = {Asymptotics and relative index on a cylinder with conical cross section}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26446}, year = {2002}, abstract = {We study pseudodifferential operators on a cylinder IR x B with cross section B that conical singularities. Configurations of that kind are the local model of cornere singularities with base spaces B. Operators A in our calculus are assumed to have symbols α which are meromorphic in the complex covariable with values in the space of all cone operators on B. In case α is dependent of the axial variable t ∈ IR, we show an explicit formula for solutions of the homogeneous equation. Each non-bjectivity point of the symbol in the complex plane corresponds to a finite-dimensional space of solutions. Moreover, we give a relative index formula.}, language = {en} } @unpublished{HarutjunjanSchulze2004, author = {Harutjunjan, Gohar and Schulze, Bert-Wolfgang}, title = {Boundary problems with meromorphic symbols in cylindrical domains}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26735}, year = {2004}, abstract = {We show relative index formulas for boundary value problems in cylindrical domains and Sobolev spaces with different weigths at ±∞. The amplitude functions are meromorphic in the axial covariable and take values in the space of boundary value problems on the cross section of the cylinder.}, language = {en} } @unpublished{HarutyunyanSchulze2006, author = {Harutyunyan, Gohar and Schulze, Bert-Wolfgang}, title = {Boundary value problems in weighted edge spaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-30104}, year = {2006}, abstract = {We study elliptic boundary value problems in a wedge with additional edge conditions of trace and potential type. We compute the (difference of the) number of such conditions in terms of the Fredholm index of the principal edge symbol. The task will be reduced to the case of special opening angles, together with a homotopy argument.}, language = {en} } @unpublished{HovhannisyanSchulze2010, author = {Hovhannisyan, A. H. and Schulze, Bert-Wolfgang}, title = {On a method for solution of the ordinary differential equations connected with Huygens' equations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45381}, year = {2010}, language = {en} } @unpublished{JaianiSchulze2004, author = {Jaiani, George and Schulze, Bert-Wolfgang}, title = {Some degenerate elliptic systems and applications to cusped plates}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26866}, year = {2004}, abstract = {The tension-compression vibration of an elastic cusped plate is studied under all the reasonable boundary conditions at the cusped edge, while at the noncusped edge displacements and at the upper and lower faces of the plate stresses are given.}, language = {en} } @unpublished{KapanadzeSchulzeSeiler2006, author = {Kapanadze, D. and Schulze, Bert-Wolfgang and Seiler, J.}, title = {Operators with singular trace conditions on a manifold with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-30058}, year = {2006}, abstract = {We establish a new calculus of pseudodifferential operators on a manifold with smooth edges and study ellipticity with extra trace and potential conditions (as well as Green operators) at the edge. In contrast to the known scenario with conditions of that kind in integral form we admit in this paper 'singular' trace, potential and Green operators, which are related to the corresponding operators of positive type in Boutet de Monvel's calculus for boundary value problems.}, language = {en} } @unpublished{KapanadzeSchulze2000, author = {Kapanadze, David and Schulze, Bert-Wolfgang}, title = {Boundary value problems on manifolds with exits to infinity}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25727}, year = {2000}, abstract = {We construct a new calculus of boundary value problems with the transmission property on a non-compact smooth manifold with boundary and conical exits to infinity. The symbols are classical both in covariables and variables. The operators are determined by principal symbol tuples modulo operators of lower orders and weights (such remainders are compact in weighted Sobolev spaces). We develop the concept of ellipticity, construct parametrices within the algebra and obtain the Fredholm property. For the existence of Shapiro-Lopatinskij elliptic boundary conditions to a given elliptic operator we prove an analogue of the Atiyah-Bott condition.}, language = {en} } @unpublished{KapanadzeSchulze2000, author = {Kapanadze, David and Schulze, Bert-Wolfgang}, title = {Pseudo-differential crack theory}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25759}, year = {2000}, abstract = {Crack problems are regarded as elements in a pseudo-differential algbra, where the two sdes int S± of the crack S are treated as interior boundaries and the boundary Y of the crack as an edge singularity. We employ the pseudo-differential calculus of boundary value problems with the transmission property near int S± and the edge pseudo-differential calculus (in a variant with Douglis-Nirenberg orders) to construct parametrices od elliptic crack problems (with extra trace and potential conditions along Y) and to characterise asymptotics of solutions near Y (expressed in the framework of continuous asymptotics). Our operator algebra with boundary and edge symbols contains new weight and order conventions that are necessary also for the more general calculus on manifolds with boundary and edges.}, language = {en} } @unpublished{KapanadzeSchulze2005, author = {Kapanadze, David and Schulze, Bert-Wolfgang}, title = {Boundary-contact problems for domains with edge singularities}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29901}, year = {2005}, abstract = {We study boundary-contact problems for elliptic equations (and systems) with interfaces that have edge singularities. Such problems represent continuous operators between weighted edge spaces and subspaces with asymptotics. Ellipticity is formulated in terms of a principal symbolic hierarchy, containing interior, transmission, and edge symbols. We construct parametrices, show regularity with asymptotics of solutions in weighted edge spaces and illustrate the results by boundary-contact problems for the Laplacian with jumping coefficients.}, language = {en} } @unpublished{KapanadzeSchulze2001, author = {Kapanadze, David and Schulze, Bert-Wolfgang}, title = {Symbolic calculus for boundary value problems on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26046}, year = {2001}, abstract = {Boundary value problems for (pseudo-) differential operators on a manifold with edges can be characterised by a hierarchy of symbols. The symbol structure is responsible or ellipicity and for the nature of parametrices within an algebra of "edge-degenerate" pseudo-differential operators. The edge symbol component of that hierarchy takes values in boundary value problems on an infinite model cone, with edge variables and covariables as parameters. Edge symbols play a crucial role in this theory, in particular, the contribution with holomorphic operatot-valued Mellin symbols. We establish a calculus in s framework of "twisted homogenity" that refers to strongly continuous groups of isomorphisms on weighted cone Sobolev spaces. We then derive an equivalent representation with a particularly transparent composition behaviour.}, language = {en} } @unpublished{KapanadzeSchulze2003, author = {Kapanadze, David and Schulze, Bert-Wolfgang}, title = {Asymptotics of potentials in the edge calculus}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26530}, year = {2003}, abstract = {Boundary value problems on manifolds with conical singularities or edges contain potential operators as well as trace and Green operators which play a similar role as the corresponding operators in (pseudo-differential) boundary value problems on a smooth manifold. There is then a specific asymptotic behaviour of these operators close to the singularities. We characterise potential operators in terms of actions of cone or edge pseudo-differential operators (in the neighbouring space) on densities supported by sbmanifolds which also have conical or edge singularities. As a byproduct we show the continuity of such potentials as continuous perators between cone or edge Sobolev spaces and subspaces with asymptotics.}, language = {en} } @unpublished{KapanadzeSchulzeWitt2000, author = {Kapanadze, David and Schulze, Bert-Wolfgang and Witt, Ingo}, title = {Coordinate invariance of the cone algebra with asymptotics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25671}, year = {2000}, abstract = {The cone algebra with discrete asymptotics on a manifold with conical singularities is shown to be invariant under natural coordinate changes, where the symbol structure (i.e., the Fuchsian interior symbol, conormal symbols of all orders) follows a corresponding transformation rule.}, language = {en} } @unpublished{KrainerSchulze2000, author = {Krainer, Thomas and Schulze, Bert-Wolfgang}, title = {Long-time asymptotics with geometric singularities in the spatial variables}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25824}, year = {2000}, abstract = {Content: Introduction 1 Anisotropic operators in a cylinder with a conical base 1.1 Manifolds with conical singularities and opertors of Fuchs type 1.2 Typical operators and symbol structures 2 Weighted wedge Sobolev spaces and edge asymptotics 2.1 Discrete edge asymptotics 2.2 Continuos edge asymptotics with discrete limit at infinity 2.3 Calculus with operator valued symbols 3 Corner asymptotics at infinity 3.1 The structure of singular functions 3.2 Operators with trace and potential conditions 3.3 Asymptotics and (anisotropic) elliptic regularity}, language = {en} } @unpublished{KrainerSchulze2001, author = {Krainer, Thomas and Schulze, Bert-Wolfgang}, title = {On the inverse of parabolic systems of partial differential equations of general form in an infinite space-time cylinder [Part 1: Chapter 1+2]}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25987}, year = {2001}, abstract = {We consider general parabolic systems of equations on the infinite time interval in case of the underlying spatial configuration is a closed manifold. The solvability of equations is studied both with respect to time and spatial variables in exponentially weighted anisotropic Sobolev spaces, and existence and maximal regularity statements for parabolic equations are proved. Moreover, we analyze the long-time behaiour of solutions in terms of complete asymptotic expansions. These results are deduced from a pseudodifferential calculus that we construct explicitly. This algebra of operators is specifically designed to contain both the classical systems of parabolic equations of general form and their inverses, parabolicity being reflected purely on symbolic level. To this end, we assign t = ∞ the meaning of an anisotropic conical point, and prove that this interprtation is consistent with the natural setting in the analysis of parabolic PDE. Hence, major parts of this work consist of the construction of an appropriate anisotropiccone calculus of so-called Volterra operators. In particular, which is the most important aspect, we obtain the complete characterization of the microlocal and the global kernel structure of the inverse of parabolicsystems in an infinite space-time cylinder. Moreover, we obtain perturbation results for parabolic equations from the investigation of the ideal structure of the calculus.}, language = {en} } @unpublished{KrainerSchulze2001, author = {Krainer, Thomas and Schulze, Bert-Wolfgang}, title = {On the inverse of parabolic systems of partial differential equations of general form in an infinite space-time cylinder [Part 2: Chapter 3-5]}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25992}, year = {2001}, abstract = {We consider general parabolic systems of equations on the infinite time interval in case of the underlying spatial configuration is a closed manifold. The solvability of equations is studied both with respect to time and spatial variables in exponentially weighted anisotropic Sobolev spaces, and existence and maximal regularity statements for parabolic equations are proved. Moreover, we analyze the long-time behaiour of solutions in terms of complete asymptotic expansions. These results are deduced from a pseudodifferential calculus that we construct explicitly. This algebra of operators is specifically designed to contain both the classical systems of parabolic equations of general form and their inverses, parabolicity being reflected purely on symbolic level. To this end, we assign t = ∞ the meaning of an anisotropic conical point, and prove that this interprtation is consistent with the natural setting in the analysis of parabolic PDE. Hence, major parts of this work consist of the construction of an appropriate anisotropiccone calculus of so-called Volterra operators. In particular, which is the most important aspect, we obtain the complete characterization of the microlocal and the global kernel structure of the inverse of parabolicsystems in an infinite space-time cylinder. Moreover, we obtain perturbation results for parabolic equations from the investigation of the ideal structure of the calculus.}, language = {en} } @unpublished{KrainerSchulze2001, author = {Krainer, Thomas and Schulze, Bert-Wolfgang}, title = {On the inverse of parabolic systems of partial differential equations of general form in an infinite space-time cylinder [Part 3: Chapter 6+7]}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26000}, year = {2001}, abstract = {We consider general parabolic systems of equations on the infinite time interval in case of the underlying spatial configuration is a closed manifold. The solvability of equations is studied both with respect to time and spatial variables in exponentially weighted anisotropic Sobolev spaces, and existence and maximal regularity statements for parabolic equations are proved. Moreover, we analyze the long-time behaiour of solutions in terms of complete asymptotic expansions. These results are deduced from a pseudodifferential calculus that we construct explicitly. This algebra of operators is specifically designed to contain both the classical systems of parabolic equations of general form and their inverses, parabolicity being reflected purely on symbolic level. To this end, we assign t = ∞ the meaning of an anisotropic conical point, and prove that this interprtation is consistent with the natural setting in the analysis of parabolic PDE. Hence, major parts of this work consist of the construction of an appropriate anisotropiccone calculus of so-called Volterra operators. In particular, which is the most important aspect, we obtain the complete characterization of the microlocal and the global kernel structure of the inverse of parabolicsystems in an infinite space-time cylinder. Moreover, we obtain perturbation results for parabolic equations from the investigation of the ideal structure of the calculus.}, language = {en} } @unpublished{KrainerSchulze2004, author = {Krainer, Thomas and Schulze, Bert-Wolfgang}, title = {The conormal symbolic structure of corner boundary value problems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26662}, year = {2004}, abstract = {Ellipticity of operators on manifolds with conical singularities or parabolicity on space-time cylinders are known to be linked to parameter-dependent operators (conormal symbols) on a corresponding base manifold. We introduce the conormal symbolic structure for the case of corner manifolds, where the base itself is a manifold with edges and boundary. The specific nature of parameter-dependence requires a systematic approach in terms of meromorphic functions with values in edge-boundary value problems. We develop here a corresponding calculus, and we construct inverses of elliptic elements.}, language = {en} } @unpublished{KytmanovMyslivetsSchulzeetal.2001, author = {Kytmanov, Aleksandr and Myslivets, Simona and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {Elliptic problems for the Dolbeault complex}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25979}, year = {2001}, abstract = {The inhomogeneous ∂-equations is an inexhaustible source of locally unsolvable equations, subelliptic estimates and other phenomena in partial differential equations. Loosely speaking, for the anaysis on complex manifolds with boundary nonelliptic problems are typical rather than elliptic ones. Using explicit integral representations we assign a Fredholm complex to the Dolbeault complex over an arbitrary bounded domain in C up(n).}, language = {en} } @unpublished{MaSchulze2009, author = {Ma, L. and Schulze, Bert-Wolfgang}, title = {Operators on manifolds with conical singularities}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-36608}, year = {2009}, abstract = {We construct elliptic elements in the algebra of (classical pseudo-differential) operators on a manifold M with conical singularities. The ellipticity of any such operator A refers to a pair of principal symbols (σ0, σ1) where σ0 is the standard (degenerate) homogeneous principal symbol, and σ1 is the so-called conormal symbol, depending on the complex Mellin covariable z. The conormal symbol, responsible for the conical singularity, is operator-valued and acts in Sobolev spaces on the base X of the cone. The σ1-ellipticity is a bijectivity condition for all z of real part (n + 1)/2 - γ, n = dimX, for some weight γ. In general, we have to rule out a discrete set of exceptional weights that depends on A. We show that for every operator A which is elliptic with respect to σ0, and for any real weight γ there is a smoothing Mellin operator F in the cone algebra such that A + F is elliptic including σ1. Moreover, we apply the results to ellipticity and index of (operator-valued) edge symbols from the calculus on manifolds with edges.}, language = {en} } @unpublished{ManicciaSchulze2002, author = {Maniccia, L. and Schulze, Bert-Wolfgang}, title = {An algebra of meromorphic corner symbols}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26360}, year = {2002}, abstract = {Operators on manifolds with corners that have base configurations with geometric singularities can be analysed in the frame of a conormal symbolic structure which is in spirit similar to the one for conical singularities of Kondrat'ev's work. Solvability of elliptic equations and asymptotics of solutions are determined by meromorphic conormal symbols. We study the case when the base has edge singularities which is a natural assumption in a number of applications. There are new phenomena, caused by a specific kind of higher degeneracy of the underlying symbols. We introduce an algebra of meromorphic edge operators that depend on complex parameters and investigate meromorphic inverses in the parameter-dependent elliptic case. Among the examples are resolvents of elliptic differential operators on manifolds with edges.}, language = {en} } @unpublished{MartinSchulze2005, author = {Martin, C.-I. and Schulze, Bert-Wolfgang}, title = {The quantisation of edge symbols}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29959}, year = {2005}, abstract = {We investigate operators on manifolds with edges from the point of view of the symbolic calculus induced by the singularities. We discuss new aspects of the quantisation of edge-degenerate symbols which lead to continuous operators in weighted edge spaces.}, language = {en} } @unpublished{NacinovichSchulzeTarkhanov1998, author = {Nacinovich, Mauro and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {On carleman formulas for the dolbeault cohomology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25224}, year = {1998}, abstract = {We discuss the Cauchy problem for the Dolbeault cohomology in a domain of C n with data on a part of the boundary. In this setting we introduce the concept of a Carleman function which proves useful in the study of uniqueness. Apart from an abstract framework we show explicit Carleman formulas for the Dolbeault cohomology.}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2004, author = {Nazaikinskii, Vladimir E. and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {On the homotopy classification of elliptic operators on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26769}, year = {2004}, abstract = {We obtain a stable homotopy classification of elliptic operators on manifolds with edges.}, language = {en} } @unpublished{NazaikinskiiSchulzeSternin1999, author = {Nazaikinskii, Vladimir E. and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Quantization methods in differential equations : Chapter 2: Quantization of Lagrangian modules}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25582}, year = {1999}, abstract = {In this chapter we use the wave packet transform described in Chapter 1 to quantize extended classical states represented by so-called Lagrangian sumbanifolds of the phase space. Functions on a Lagrangian manifold form a module over the ring of classical Hamiltonian functions on the phase space (with respect to pointwise multiplication). The quantization procedure intertwines this multiplication with the action of the corresponding quantum Hamiltonians; hence we speak of quantization of Lagrangian modules. The semiclassical states obtained by this quantization procedure provide asymptotic solutions to differential equations with a small parameter. Locally, such solutions can be represented by WKB elements. Global solutions are given by Maslov's canonical operator [2]; also see, e.g., [3] and the references therein. Here the canonical operator is obtained in the framework of the universal quantization procedure provided by the wave packet transform. This procedure was suggested in [4] (see also the references there) and further developed in [5]; our exposition is in the spirit of these papers. Some further bibliographical remarks can be found in the beginning of Chapter 1.}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2003, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 3: Eta invariant and the spectral flow}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26595}, year = {2003}, abstract = {Contents: Chapter 3: Eta Invariant and the Spectral Flow 3.1. Introduction 3.2. The Classical Spectral Flow 3.2.1. Definition and main properties 3.2.2. The spectral flow formula for periodic families 3.3. The Atiyah-Patodi-Singer Eta Invariant 3.3.1. Definition of the eta invariant 3.3.2. Variation under deformations of the operator 3.3.3. Homotopy invariance. Examples 3.4. The Eta Invariant of Families with Parameter (Melrose's Theory) 3.4.1. A trace on the algebra of parameter-dependent operators 3.4.2. Definition of the Melrose eta invariant 3.4.3. Relationship with the Atiyah-Patodi-Singer eta invariant 3.4.4. Locality of the derivative of the eta invariant. Examples 3.5. The Spectral Flow of Families of Parameter-Dependent Operators 3.5.1. Meromorphic operator functions. Multiplicities of singular points 3.5.2. Definition of the spectral flow 3.6. Higher Spectral Flows 3.6.1. Spectral sections 3.6.2. Spectral flow of homotopies of families of self-adjoint operators 3.6.3. Spectral flow of homotopies of families of parameter-dependent operators 3.7. Bibliographical Remarks}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2003, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 4: Pseudodifferential operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26587}, year = {2003}, abstract = {Contents: Chapter 4: Pseudodifferential Operators 4.1. Preliminary Remarks 4.1.1. Why are pseudodifferential operators needed? 4.1.2. What is a pseudodifferential operator? 4.1.3. What properties should the pseudodifferential calculus possess? 4.2. Classical Pseudodifferential Operators on Smooth Manifolds 4.2.1. Definition of pseudodifferential operators on a manifold 4.2.2. H{\"o}rmander's definition of pseudodifferential operators 4.2.3. Basic properties of pseudodifferential operators 4.3. Pseudodifferential Operators in Sections of Hilbert Bundles 4.3.1. Hilbert bundles 4.3.2. Operator-valued symbols. Specific features of the infinite-dimensional case 4.3.3. Symbols of compact fiber variation 4.3.4. Definition of pseudodifferential operators 4.3.5. The composition theorem 4.3.6. Ellipticity 4.3.7. The finiteness theorem 4.4. The Index Theorem 4.4.1. The Atiyah-Singer index theorem 4.4.2. The index theorem for pseudodifferential operators in sections of Hilbert bundles 4.4.3. Proof of the index theorem 4.5. Bibliographical Remarks}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2004, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 6: Elliptic theory on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26757}, year = {2004}, abstract = {Contents: Chapter 6: Elliptic Theory on Manifolds with Edges Introduction 6.1. Motivation and Main Constructions 6.1.1. Manifolds with edges 6.1.2. Edge-degenerate differential operators 6.1.3. Symbols 6.1.4. Elliptic problems 6.2. Pseudodifferential Operators 6.2.1. Edge symbols 6.2.2. Pseudodifferential operators 6.2.3. Quantization 6.3. Elliptic Morphisms and the Finiteness Theorem 6.3.1. Matrix Green operators 6.3.2. General morphisms 6.3.3. Ellipticity, Fredholm property, and smoothness Appendix A. Fiber Bundles and Direct Integrals A.1. Local theory A.2. Globalization A.3. Versions of the Definition of the Norm}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2003, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Elliptic theory on manifolds with nonisolated singularities : V. Index formulas for elliptic problems on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26500}, year = {2003}, abstract = {For elliptic problems on manifolds with edges, we construct index formulas in form of a sum of homotopy invariant contributions of the strata (the interior of the manifold and the edge). Both terms are the indices of elliptic operators, one of which acts in spaces of sections of finite-dimensional vector bundles on a compact closed manifold and the other in spaces of sections of infinite-dimensional vector bundles over the edge.}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2003, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 1: Localization (surgery) in elliptic theory}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26546}, year = {2003}, abstract = {Contents: Chapter 1: Localization (Surgery) in Elliptic Theory 1.1. The Index Locality Principle 1.1.1. What is locality? 1.1.2. A pilot example 1.1.3. Collar spaces 1.1.4. Elliptic operators 1.1.5. Surgery and the relative index theorem 1.2. Surgery in Index Theory on Smooth Manifolds 1.2.1. The Booß-Wojciechowski theorem 1.2.2. The Gromov-Lawson theorem 1.3. Surgery for Boundary Value Problems 1.3.1. Notation 1.3.2. General boundary value problems 1.3.3. A model boundary value problem on a cylinder 1.3.4. The Agranovich-Dynin theorem 1.3.5. The Agranovich theorem 1.3.6. Bojarski's theorem and its generalizations 1.4. (Micro)localization in Lefschetz theory 1.4.1. The Lefschetz number 1.4.2. Localization and the contributions of singular points 1.4.3. The semiclassical method and microlocalization 1.4.4. The classical Atiyah-Bott-Lefschetz theorem}, language = {en} }