@article{DonatLourencoPaolinietal.2018, author = {Donat, Stefan and Lourenco, Marta Sofia Rocha and Paolini, Alessio and Otten, Cecile and Renz, Marc and Abdelilah-Seyfried, Salim}, title = {Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis}, series = {eLife}, volume = {7}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.28939}, pages = {22}, year = {2018}, abstract = {Endothelial cells respond to different levels of fluid shear stress through adaptations of their mechanosensitivity. Currently, we lack a good understanding of how this contributes to sculpting of the cardiovascular system. Cerebral cavernous malformation (CCM) is an inherited vascular disease that occurs when a second somatic mutation causes a loss of CCM1/KRIT1, CCM2, or CCM3 proteins. Here, we demonstrate that zebrafish Krit1 regulates the formation of cardiac valves. Expression of heg1, which encodes a binding partner of Krit1, is positively regulated by blood-flow. In turn, Heg1 stabilizes levels of Krit1 protein, and both Heg1 and Krit1 dampen expression levels of klf2a, a major mechanosensitive gene. Conversely, loss of Krit1 results in increased expression of klf2a and notch1b throughout the endocardium and prevents cardiac valve leaflet formation. Hence, the correct balance of blood-flow-dependent induction and Krit1 protein mediated repression of klf2a and notch1b ultimately shapes cardiac valve leaflet morphology.}, language = {en} } @article{OttenKnoxBouldayetal.2018, author = {Otten, Cecile and Knox, Jessica and Boulday, Gwenola and Eymery, Mathias and Haniszewski, Marta and Neuenschwander, Martin and Radetzki, Silke and Vogt, Ingo and Haehn, Kristina and De Luca, Coralie and Cardoso, Cecile and Hamad, Sabri and Igual Gil, Carla and Roy, Peter and Albiges-Rizo, Corinne and Faurobert, Eva and von Kries, Jens P. and Campillos, Monica and Tournier-Lasserve, Elisabeth and Derry, William Brent and Abdelilah-Seyfried, Salim}, title = {Systematic pharmacological screens uncover novel pathways involved in cerebral cavernous malformations}, series = {EMBO molecular medicine}, volume = {10}, journal = {EMBO molecular medicine}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {1757-4676}, doi = {10.15252/emmm.201809155}, pages = {17}, year = {2018}, abstract = {Cerebral cavernous malformations (CCMs) are vascular lesions in the central nervous system causing strokes and seizures which currently can only be treated through neurosurgery. The disease arises through changes in the regulatory networks of endothelial cells that must be comprehensively understood to develop alternative, non-invasive pharmacological therapies. Here, we present the results of several unbiased small-molecule suppression screens in which we applied a total of 5,268 unique substances to CCM mutant worm, zebrafish, mouse, or human endothelial cells. We used a systems biology-based target prediction tool to integrate the results with the whole-transcriptome profile of zebrafish CCM2 mutants, revealing signaling pathways relevant to the disease and potential targets for small-molecule-based therapies. We found indirubin-3-monoxime to alleviate the lesion burden in murine preclinical models of CCM2 and CCM3 and suppress the loss-of-CCM phenotypes in human endothelial cells. Our multi-organism-based approach reveals new components of the CCM regulatory network and foreshadows novel small-molecule-based therapeutic applications for suppressing this devastating disease in patients.}, language = {en} } @article{RoedelOttenDonatetal.2019, author = {R{\"o}del, Claudia Jasmin and Otten, Cecile and Donat, Stefan and Louren{\c{c}}o, Marta Sofia Rocha and Fischer, Dorothea and Kuropka, Benno and Paolini, Alessio and Freund, Christian and Abdelilah-Seyfried, Salim}, title = {Blood Flow Suppresses Vascular Anomalies in a Zebrafish Model of Cerebral Cavernous Malformations}, series = {Circulation Research}, volume = {125}, journal = {Circulation Research}, number = {10}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0009-7330}, doi = {10.1161/CIRCRESAHA.119.315076}, pages = {E43 -- E54}, year = {2019}, abstract = {RATIONALE: Pathological biomechanical signaling induces vascular anomalies including cerebral cavernous malformations (CCM), which are caused by a clonal loss of CCM1/KRIT1 (Krev interaction trapped protein 1), CCM2/MGC4607, or CCM3/PDCD10. Why patients typically experience lesions only in lowly perfused venous capillaries of the cerebrovasculature is completely unknown. OBJECTIVE: In contrast, animal models with a complete loss of CCM proteins lack a functional heart and blood flow and exhibit vascular anomalies within major blood vessels as well. This finding raises the possibility that hemodynamics may play a role in the context of this vascular pathology. METHODS AND RESULTS: Here, we used a genetic approach to restore cardiac function and blood flow in a zebrafish model of CCM1. We find that blood flow prevents cardiovascular anomalies including a hyperplastic expansion within a large Ccm1-deficient vascular bed, the lateral dorsal aorta. CONCLUSIONS: This study identifies blood flow as an important physiological factor that is protective in the cause of this devastating vascular pathology.}, language = {en} } @article{LombardoOttenAbdelilahSeyfried2015, author = {Lombardo, Veronica A. and Otten, Cecile and Abdelilah-Seyfried, Salim}, title = {Large-scale Zebrafish Embryonic Heart Dissection for Transcriptional Analysis}, series = {Journal of visualized experiments}, journal = {Journal of visualized experiments}, number = {95}, publisher = {JoVE}, address = {Cambridge}, issn = {1940-087X}, doi = {10.3791/52087}, pages = {7}, year = {2015}, abstract = {The zebrafish embryonic heart is composed of only a few hundred cells, representing only a small fraction of the entire embryo. Therefore, to prevent the cardiac transcriptome from being masked by the global embryonic transcriptome, it is necessary to collect sufficient numbers of hearts for further analyses. Furthermore, as zebrafish cardiac development proceeds rapidly, heart collection and RNA extraction methods need to be quick in order to ensure homogeneity of the samples. Here, we present a rapid manual dissection protocol for collecting functional/beating hearts from zebrafish embryos. This is an essential prerequisite for subsequent cardiac-specific RNA extraction to determine cardiac-specific gene expression levels by transcriptome analyses, such as quantitative real-time polymerase chain reaction (RT-qPCR). The method is based on differential adhesive properties of the zebrafish embryonic heart compared with other tissues; this allows for the rapid physical separation of cardiac from extracardiac tissue by a combination of fluidic shear force disruption, stepwise filtration and manual collection of transgenic fluorescently labeled hearts.}, language = {en} } @article{RenzOttenFaurobertetal.2015, author = {Renz, Marc and Otten, Cecile and Faurobert, Eva and Rudolph, Franziska and Zhu, Yuan and Boulday, Gwenola and Duchene, Johan and Mickoleit, Michaela and Dietrich, Ann-Christin and Ramspacher, Caroline and Steed, Emily and Manet-Dupe, Sandra and Benz, Alexander and Hassel, David and Vermot, Julien and Huisken, Jan and Tournier-Lasserve, Elisabeth and Felbor, Ute and Sure, Ulrich and Albiges-Rizo, Corinne and Abdelilah-Seyfried, Salim}, title = {Regulation of beta 1 Integrin-Klf2-Mediated angiogenesis by CCM proteins}, series = {Developmental cell}, volume = {32}, journal = {Developmental cell}, number = {2}, publisher = {Cell Press}, address = {Cambridge}, issn = {1534-5807}, doi = {10.1016/j.devcel.2014.12.016}, pages = {181 -- 190}, year = {2015}, abstract = {Mechanotransduction pathways are activated in response to biophysical stimuli during the development or homeostasis of organs and tissues. In zebrafish, the blood-flow-sensitive transcription factor Klf2a promotes VEGF-dependent angiogenesis. However, the means by which the Klf2a mechanotransduction pathway is regulated to prevent continuous angiogenesis remain unknown. Here we report that the upregulation of klf2 mRNA causes enhanced egfl7 expression and angiogenesis signaling, which underlies cardiovascular defects associated with the loss of cerebral cavernous malformation (CCM) proteins in the zebrafish embryo. Using CCM-protein-depleted human umbilical vein endothelial cells, we show that the misexpression of KLF2 mRNA requires the extracellular matrix-binding receptor beta 1 integrin and occurs in the absence of blood flow. Downregulation of beta 1 integrin rescues ccm mutant cardiovascular malformations in zebrafish. Our work reveals a beta 1 integrin-Klf2-Egfl7-signaling pathway that is tightly regulated by CCM proteins. This regulation prevents angiogenic overgrowth and ensures the quiescence of endothelial cells.}, language = {en} }