@phdthesis{Riedel2023, author = {Riedel, Soraya Lisanne}, title = {Development of electrochemical antibody-based and enzymatic assays for mycotoxin analysis in food}, doi = {10.25932/publishup-60747}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-607477}, school = {Universit{\"a}t Potsdam}, pages = {XV, 95}, year = {2023}, abstract = {Electrochemical methods are promising to meet the demand for easy-to-use devices monitoring key parameters in the food industry. Many companies run own lab procedures for mycotoxin analysis, but it is a major goal to simplify the analysis. The enzyme-linked immunosorbent assay using horseradish peroxidase as enzymatic label, together with 3,3',5,5' tetramethylbenzidine (TMB)/H2O2 as substrates allows sensitive mycotoxin detection with optical detection methods. For the miniaturization of the detection step, an electrochemical system for mycotoxin analysis was developed. To this end, the electrochemical detection of TMB was studied by cyclic voltammetry on different screen-printed electrodes (carbon and gold) and at different pH values (pH 1 and pH 4). A stable electrode reaction, which is the basis for the further construction of the electrochemical detection system, could be achieved at pH 1 on gold electrodes. An amperometric detection method for oxidized TMB, using a custom-made flow cell for screen-printed electrodes, was established and applied for a competitive magnetic bead-based immunoassay for the mycotoxin ochratoxin A. A limit of detection of 150 pM (60 ng/L) could be obtained and the results were verified with optical detection. The applicability of the magnetic bead-based immunoassay was tested in spiked beer using a handheld potentiostat connected via Bluetooth to a smartphone for amperometric detection allowing to quantify ochratoxin A down to 1.2 nM (0.5 µg/L). Based on the developed electrochemical detection system for TMB, the applicability of the approach was demonstrated with a magnetic bead-based immunoassay for the ergot alkaloid, ergometrine. Under optimized assay conditions a limit of detection of 3 nM (1 µg/L) was achieved and in spiked rye flour samples ergometrine levels in a range from 25 to 250 µg/kg could be quantified. All results were verified with optical detection. The developed electrochemical detection method for TMB gives great promise for the detection of TMB in many other HRP-based assays. A new sensing approach, based on an enzymatic electrochemical detection system for the mycotoxin fumonisin B1 was established using an Aspergillus niger fumonisin amine oxidase (AnFAO). AnFAO was produced recombinantly in E. coli as maltose-binding protein fusion protein and catalyzes the oxidative deamination of fumonisins, producing hydrogen peroxide. It was found that AnFAO has a high storage and temperature stability. The enzyme was coupled covalently to magnetic particles, and the enzymatically produced H2O2 in the reaction with fumonisin B1 was detected amperometrically in a flow injection system using Prussian blue/carbon electrodes and the custom-made wall-jet flow cell. Fumonisin B1 could be quantified down to 1.5 µM (≈ 1 mg/L). The developed system represents a new approach to detect mycotoxins using enzymes and electrochemical methods.}, language = {en} } @phdthesis{Wettstein2015, author = {Wettstein, Christoph}, title = {Cytochrome c-DNA and cytochrome c-enzyme interactions for the construction of analytical signal chains}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-78367}, school = {Universit{\"a}t Potsdam}, pages = {120}, year = {2015}, abstract = {Electron transfer (ET) reactions play a crucial role in the metabolic pathways of all organisms. In biotechnological approaches, the redox properties of the protein cytochrome c (cyt c), which acts as an electron shuttle in the respiratory chain, was utilized to engineer ET chains on electrode surfaces. With the help of the biopolymer DNA, the redox protein assembles into electro active multilayer (ML) systems, providing a biocompatible matrix for the entrapment of proteins. In this study the characteristics of the cyt c and DNA interaction were defined on the molecular level for the first time and the binding sites of DNA on cyt c were identified. Persistent cyt c/DNA complexes were formed in solution under the assembly conditions of ML architectures, i.e. pH 5.0 and low ionic strength. At pH 7.0, no agglomerates were formed, permitting the characterization of the NMR spectroscopy. Using transverse relaxation-optimized spectroscopy (TROSY)-heteronuclear single quantum coherence (HSQC) experiments, DNAs' binding sites on the protein were identified. In particular, negatively charged AA residues, which are known interaction sites in cyt c/protein binding were identified as the main contact points of cyt c and DNA. Moreover, the sophisticated task of arranging proteins on electrode surfaces to create functional ET chains was addressed. Therefore, two different enzyme types, the flavin dependent fructose dehydrogenase (FDH) and the pyrroloquinoline quinone dependent glucose dehydrogenase (PQQ-GDH), were tested as reaction partners of freely diffusing cyt c and cyt c immobilized on electrodes in mono- and MLs. The characterisation of the ET processes was performed by means of electrochemistry and the protein deposition was monitored by microgravimetric measurements. FDH and PQQ-GDH were found to be generally suitable for combination with the cyt c/DNA ML system, since both enzymes interact with cyt c in solution and in the immobilized state. The immobilization of FDH and cyt c was achieved with the enzyme on top of a cyt c monolayer electrode without the help of a polyelectrolyte. Combining FDH with the cyt c/DNA ML system did not succeed, yet. However, the basic conditions for this protein-protein interaction were defined. PQQ-GDH was successfully coupled with the ML system, demonstrating that that the cyt c/DNA ML system provides a suitable interface for enzymes and that the creation of signal chains, based on the idea of co-immobilized proteins is feasible. Future work may be directed to the investigation of cyt c/DNA interaction under the precise conditions of ML assembly. Therefore, solid state NMR or X-ray crystallography may be required. Based on the results of this study, the combination of FDH with the ML system should be addressed. Moreover, alternative types of enzymes may be tested as catalytic component of the ML assembly, aiming on the development of innovative biosensor applications.}, language = {en} }