@article{SchimkaLomadzeRabeetal.2017, author = {Schimka, Selina and Lomadze, Nino and Rabe, Maren and Kopyshev, Alexey and Lehmann, Maren and von Klitzing, Regine and Rumyantsev, Artem M. and Kramarenko, Elena Yu. and Santer, Svetlana}, title = {Photosensitive microgels containing azobenzene surfactants of different charges}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {19}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c6cp04555c}, pages = {108 -- 117}, year = {2017}, abstract = {We report on light sensitive microgel particles that can change their volume reversibly in response to illumination with light of different wavelengths. To make the anionic microgels photosensitive we add surfactants with a positively charged polyamine head group and an azobenzene containing tail. Upon illumination, azobenzene undergoes a reversible photo-isomerization reaction from a trans- to a cis-state accompanied by a change in the hydrophobicity of the surfactant. Depending on the isomerization state, the surfactant molecules are either accommodated within the microgel (trans- state) resulting in its shrinkage or desorbed back into water (cis-isomer) letting the microgel swell. We have studied three surfactants differing in the number of amino groups, so that the number of charges of the surfactant head varies between 1 and 3. We have found experimentally and theoretically that the surfactant concentration needed for microgel compaction increases with decreasing number of charges of the head group. Utilization of polyamine azobenzene containing surfactants for the light triggered remote control of the microgel size opens up a possibility for applications of light responsive microgels as drug carriers in biology and medicine.}, language = {en} } @article{SchimkaKlierdeGuerenuetal.2019, author = {Schimka, Selina and Klier, Dennis Tobias and de Guerenu, Anna Lopez and Bastian, Philipp and Lomadze, Nino and Kumke, Michael Uwe and Santer, Svetlana}, title = {Photo-isomerization of azobenzene containing surfactants induced by near-infrared light using upconversion nanoparticles as mediator}, series = {Journal of physics : Condensed matter}, volume = {31}, journal = {Journal of physics : Condensed matter}, number = {12}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0953-8984}, doi = {10.1088/1361-648X/aafcfa}, pages = {9}, year = {2019}, abstract = {Here we report on photo-isomerization of azobenzene containing surfactants induced during irradiation with near-infrared (NIR) light in the presence of upconversion nanoparticles (UCNPs) acting as mediator. The surfactant molecule consists of charged head group and hydrophobic tail with azobenzene group incorporated in alkyl chain. The azobenzene group can be reversible photo-isomerized between two states: trans- and cis- by irradiation with light of an appropriate wavelength. The trans-cis photo-isomerization is induced by UV light, while cis-trans isomerization proceeds either thermally in darkness, or can be accelerated by exposure to illumination with a longer wavelength typically in a blue/green range. We present the application of lanthanide doped UCNPs to successfully switch azobenzene containing surfactants from cis to trans conformation in bulk solution using NIR light. Using Tm-3(+) or Er-3(+) as activator ions, the UCNPs provide emissions in the spectral range of 450 nm < lambda(em) < 480 nm (for Tm-3(+), three and four photon induced emission) or 525 nm < lambda(em) < 545 nm (for Er-3(+), two photon induced emission), respectively. Especially for UCNPs containing Tm-3(+) a good overlap of the emissions with the absorption bands of the azobenzene is present. Under illumination of the surfactant solution with NIR light (lambda(ex) = 976 nm) in the presence of the Tm-3(+)-doped UCNPs, the relaxation time of cis-trans photo-isomerization was increased by almost 13 times compared to thermally induced isomerization. The influence of thermal heating due to the irradiation using NIR light was shown to be minor for solvents not absorbing in NIR spectral range (e.g. CHCl3) in contrast to water, which shows a distinct absorption in the NIR.}, language = {en} } @article{SchimkaGordievskayaLomadzeetal.2017, author = {Schimka, Selina and Gordievskaya, Yulia D. and Lomadze, Nino and Lehmann, Maren and von Klitzing, Regine and Rumyantsev, Artem M. and Kramarenko, Elena Yu. and Santer, Svetlana}, title = {Communication: Light driven remote control of microgels' size in the presence of photosensitive surfactant: Complete phase diagram}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {147}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4986143}, pages = {5}, year = {2017}, abstract = {Here we report on a light triggered remote control of microgel size in the presence of photosensitive surfactant. The hydrophobic tail of the cationic surfactant contains azobenzene group that undergoes a reversible photo-isomerization reaction from a trans-to a cis-state accompanied by a change in the hydrophobicity of the surfactant. We have investigated light assisted behaviour and the complex formation of the microgels with azobenzene containing surfactant over the broad concentrational range starting far below and exceeding several times of the critical micelle concentration (CMC). At small surfactant concentration in solution (far below CMC), the surfactant in the trans-state accommodates within the microgel causing its compaction, while the cis-isomer desorbs out of microgel resulting in its swelling. The process of the microgel size change can be described as swelling on UV irradiation (trans-cis isomerization) and shrinking on irradiation with blue light (cis-trans isomerization). However, at the surfactant concentrations larger than CMC, the opposite behaviour is observed: the microgel swells on blue irradiation and shrinks during exposure to UV light. We explain this behaviour theoretically taking into account isomer dependent micellization of surfactant within the microgels. Published by AIP Publishing.}, language = {en} } @article{SchimkaSanterMujkicNinnemannetal.2016, author = {Schimka, Selina and Santer, Svetlana and Mujkic-Ninnemann, Nina M. and Bleger, David and Hartmann, Laura and Wehle, Marko and Lipowsky, Reinhard and Santer, Mark}, title = {Photosensitive Peptidomimetic for Light-Controlled, Reversible DNA Compaction}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {17}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/acs.biomac.6b00052}, pages = {1959 -- 1968}, year = {2016}, abstract = {Light-induced DNA compaction as part of nonviral gene delivery was investigated intensively in the past years, although the bridging between the artificial light switchable compacting.agents and biodompatible light insensitive compacting agents was not achieved until now. In this paper, we report on light-induced compaction and decompaction of DNA molecules in the presence of a new typeof agent, a multivalent cationic peptidomimetic molecule containing a photosensitive Azo-group as a branch (Azo-PM). Az-o-PM is synthesized using a solid-phase procedure during Which anrazoberizene unit is attached as a side chain to an Oligo(arnidoamine) backbone. We shoW, that within a-certain Tange,of concentrations and under illumination with light of appropriate-wavelengths, these cationic Molecules induce reversible DNA compaction/decompaction by photo-isomerization of the incorporated azobenzene unit between a hydrophobic trans- and 4 hydrophilic cis-conformation, as characterized by dynamic light scattering and AFM measurements. In contrast to other molecular Species used for invasive DNA compaction, such as-widely used azobenzene containing cationic surfactant (Azo-TAR, C-4-Azo-OCX-TMAB), the presented peptidomimetic agent appears to lead to different compleication/compaction mechanisms., An investigation of Ato-PM in close proximity to a DNA segment by means of a molecular dynamics simulation sustains a picture in which Azo-PM acts as a multivalent counterion, with its rather large cationic oligo(amidoamine) backbone dominating the interaction with the double helix, fine-tuned or assisted by the presence" andisomerization state of the Azo-moiety. However, due to its peptidomimetic backbone, Azo-PM should be far less toxic than photosensitive surfactants and might represent a starting point for a conscious design of photoswitchable, biocompatible vectors for gene delivery.}, language = {en} } @misc{SchimkaLomadzeRabeetal.2017, author = {Schimka, Selina and Lomadze, Nino and Rabe, Maren and Kopyshev, Alexey and Lehmann, Maren and von Klitzing, Regine and Rumyantsev, Artem M. and Kramarenko, Elena Yu. and Santer, Svetlana}, title = {Photosensitive microgels containing azobenzene surfactants of different charges}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {461}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413528}, year = {2017}, abstract = {We report on light sensitive microgel particles that can change their volume reversibly in response to illumination with light of different wavelengths. To make the anionic microgels photosensitive we add surfactants with a positively charged polyamine head group and an azobenzene containing tail. Upon illumination, azobenzene undergoes a reversible photo-isomerization reaction from a trans- to a cis-state accompanied by a change in the hydrophobicity of the surfactant. Depending on the isomerization state, the surfactant molecules are either accommodated within the microgel (trans-state) resulting in its shrinkage or desorbed back into water (cis-isomer) letting the microgel swell. We have studied three surfactants differing in the number of amino groups, so that the number of charges of the surfactant head varies between 1 and 3. We have found experimentally and theoretically that the surfactant concentration needed for microgel compaction increases with decreasing number of charges of the head group. Utilization of polyamine azobenzene containing surfactants for the light triggered remote control of the microgel size opens up a possibility for applications of light responsive microgels as drug carriers in biology and medicine.}, language = {en} }