@misc{ShpritsAngelopoulosRusselletal.2017, author = {Shprits, Yuri Y. and Angelopoulos, V. and Russell, C. T. and Strangeway, R. J. and Runov, A. and Turner, D. and Caron, R. and Cruce, P. and Leneman, D. and Michaelis, I. and Petrov, V. and Panasyuk, M. and Yashin, I. and Drozdov, Alexander and Russell, C. L. and Kalegaev, V. and Nazarkov, I. and Clemmons, J. H.}, title = {Scientific Objectives of Electron Losses and Fields INvestigation Onboard Lomonosov Satellite}, series = {Space science reviews}, volume = {214}, journal = {Space science reviews}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-6308}, doi = {10.1007/s11214-017-0455-4}, pages = {19}, year = {2017}, abstract = {The objective of the Electron Losses and Fields INvestigation on board the Lomonosov satellite ( ELFIN-L) project is to determine the energy spectrum of precipitating energetic electrons and ions and, together with other polar-orbiting and equatorial missions, to better understand the mechanisms responsible for scattering these particles into the atmosphere. This mission will provide detailed measurements of the radiation environment at low altitudes. The 400-500 km sun-synchronous orbit of Lomonosov is ideal for observing electrons and ions precipitating into the atmosphere. This mission provides a unique opportunity to test the instruments. Similar suite of instruments will be flown in the future NSF-and NASA-supported spinning CubeSat ELFIN satellites which will augment current measurements by providing detailed information on pitch-angle distributions of precipitating and trapped particles.}, language = {en} } @misc{SadovnichiiPanasyukAmelyushkinetal.2017, author = {Sadovnichii, V. A. and Panasyuk, M. I. and Amelyushkin, A. M. and Bogomolov, V. V. and Benghin, V. V. and Garipov, G. K. and Kalegaev, V. V. and Klimov, P. A. and Khrenov, B. A. and Petrov, V. L. and Sharakin, S. A. and Shirokov, A. V. and Svertilov, S. I. and Zotov, M. Y. and Yashin, I. V. and Gorbovskoy, E. S. and Lipunov, V. M. and Park, I. H. and Lee, J. and Jeong, S. and Kim, M. B. and Jeong, H. M. and Shprits, Yuri Y. and Angelopoulos, V. and Russell, C. T. and Runov, A. and Turner, D. and Strangeway, R. J. and Caron, R. and Biktemerova, S. and Grinyuk, A. and Lavrova, M. and Tkachev, L. and Tkachenko, A. and Martinez, O. and Salazar, H. and Ponce, E.}, title = {"Lomonosov" Satellite-Space Observatory to Study Extreme Phenomena in Space}, series = {Space science reviews}, volume = {212}, journal = {Space science reviews}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-6308}, doi = {10.1007/s11214-017-0425-x}, pages = {1705 -- 1738}, year = {2017}, abstract = {The "Lomonosov" space project is lead by Lomonosov Moscow State University in collaboration with the following key partners: Joint Institute for Nuclear Research, Russia, University of California, Los Angeles (USA), University of Pueblo (Mexico), Sungkyunkwan University (Republic of Korea) and with Russian space industry organi-zations to study some of extreme phenomena in space related to astrophysics, astroparticle physics, space physics, and space biology. The primary goals of this experiment are to study: -Ultra-high energy cosmic rays (UHECR) in the energy range of the Greizen-ZatsepinKuzmin (GZK) cutoff; -Ultraviolet (UV) transient luminous events in the upper atmosphere; -Multi-wavelength study of gamma-ray bursts in visible, UV, gamma, and X-rays; -Energetic trapped and precipitated radiation (electrons and protons) at low-Earth orbit (LEO) in connection with global geomagnetic disturbances; -Multicomponent radiation doses along the orbit of spacecraft under different geomagnetic conditions and testing of space segments of optical observations of space-debris and other space objects; -Instrumental vestibular-sensor conflict of zero-gravity phenomena during space flight. This paper is directed towards the general description of both scientific goals of the project and scientific equipment on board the satellite. The following papers of this issue are devoted to detailed descriptions of scientific instruments.}, language = {en} } @article{OttoJaumannKrohnetal.2016, author = {Otto, Katharina Alexandra and Jaumann, R. and Krohn, K. and Spahn, Frank and Raymond, C. A. and Russell, C. T.}, title = {The Coriolis effect on mass wasting during the Rheasilvia impact on asteroid Vesta}, series = {Geophysical research letters}, volume = {43}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2016GL071539}, pages = {12340 -- 12347}, year = {2016}, abstract = {We investigate the influence of the Coriolis force on mass motion related to the Rheasilvia impact on asteroid Vesta. Observations by the NASA Dawn mission revealed a pattern of curved radial ridges, which are related to Coriolis-deflected mass-wasting during the initial modification stage of the crater. Utilizing the projected curvature of the mass-wasting trajectories, we developed a method that enabled investigation of the initial mass wasting of the Rheasilvia impact by observational means. We demonstrate that the Coriolis force can strongly affect the crater formation processes on rapidly rotating objects, and we derive the material's velocities (28.9 ± 22.5 m/s), viscosities (1.5-9.0 × 106 Pa s) and coefficients of friction (0.02-0.81) during the impact modification stage. The duration of the impact modification stage could be estimated to (1.1 ± 0.5) h. By analyzing the velocity distribution with respect to the topography, we deduce that the Rheasilvia impactor hit a heterogeneous target and that the initial crater walls were significantly steeper during the modification stage.}, language = {en} } @article{ArridgeAchilleosAgarwaletal.2014, author = {Arridge, Christopher S. and Achilleos, N. and Agarwal, Jessica and Agnor, C. B. and Ambrosi, R. and Andre, N. and Badman, S. V. and Baines, K. and Banfield, D. and Barthelemy, M. and Bisi, M. M. and Blum, J. and Bocanegra-Bahamon, T. and Bonfond, B. and Bracken, C. and Brandt, P. and Briand, C. and Briois, C. and Brooks, S. and Castillo-Rogez, J. and Cavalie, T. and Christophe, B. and Coates, Andrew J. and Collinson, G. and Cooper, J. F. and Costa-Sitja, M. and Courtin, R. and Daglis, I. A. and De Pater, Imke and Desai, M. and Dirkx, D. and Dougherty, M. K. and Ebert, R. W. and Filacchione, Gianrico and Fletcher, Leigh N. and Fortney, J. and Gerth, I. and Grassi, D. and Grodent, D. and Gr{\"u}n, Eberhard and Gustin, J. and Hedman, M. and Helled, R. and Henri, P. and Hess, Sebastien and Hillier, J. K. and Hofstadter, M. H. and Holme, R. and Horanyi, M. and Hospodarsky, George B. and Hsu, S. and Irwin, P. and Jackman, C. M. and Karatekin, O. and Kempf, Sascha and Khalisi, E. and Konstantinidis, K. and Kruger, H. and Kurth, William S. and Labrianidis, C. and Lainey, V. and Lamy, L. L. and Laneuville, Matthieu and Lucchesi, D. and Luntzer, A. and MacArthur, J. and Maier, A. and Masters, A. and McKenna-Lawlor, S. and Melin, H. and Milillo, A. and Moragas-Klostermeyer, Georg and Morschhauser, Achim and Moses, J. I. and Mousis, O. and Nettelmann, N. and Neubauer, F. M. and Nordheim, T. and Noyelles, B. and Orton, G. S. and Owens, Mathew and Peron, R. and Plainaki, C. and Postberg, F. and Rambaux, N. and Retherford, K. and Reynaud, Serge and Roussos, E. and Russell, C. T. and Rymer, Am. and Sallantin, R. and Sanchez-Lavega, A. and Santolik, O. and Saur, J. and Sayanagi, Km. and Schenk, P. and Schubert, J. and Sergis, N. and Sittler, E. C. and Smith, A. and Spahn, Frank and Srama, Ralf and Stallard, T. and Sterken, V. and Sternovsky, Zoltan and Tiscareno, M. and Tobie, G. and Tosi, F. and Trieloff, M. and Turrini, D. and Turtle, E. P. and Vinatier, S. and Wilson, R. and Zarkat, P.}, title = {The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets}, series = {Planetary and space science}, volume = {104}, journal = {Planetary and space science}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2014.08.009}, pages = {122 -- 140}, year = {2014}, abstract = {Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99\% of the mass of the Sun's planetary system. They can be subdivided into the Ice Giants (Uranus and Neptune) and the Gas Giants (Jupiter and Saturn), which differ from each other in a number of fundamental ways. Uranus, in particular is the most challenging to our understanding of planetary formation and evolution, with its large obliquity, low self-luminosity, highly asymmetrical internal field, and puzzling internal structure. Uranus also has a rich planetary system consisting of a system of inner natural satellites and complex ring system, five major natural icy satellites, a system of irregular moons with varied dynamical histories, and a highly asymmetrical magnetosphere. Voyager 2 is the only spacecraft to have explored Uranus, with a flyby in 1986, and no mission is currently planned to this enigmatic system. However, a mission to the uranian system would open a new window on the origin and evolution of the Solar System and would provide crucial information on a wide variety of physicochemical processes in our Solar System. These have clear implications for understanding exoplanetary systems. In this paper we describe the science case for an orbital mission to Uranus with an atmospheric entry probe to sample the composition and atmospheric physics in Uranus' atmosphere. The characteristics of such an orbiter and a strawman scientific payload are described and we discuss the technical challenges for such a mission. This paper is based on a white paper submitted to the European Space Agency's call for science themes for its large-class mission programme in 2013.}, language = {en} }