@article{DebPopovaHehnetal.2019, author = {Deb, Marwan and Popova, Elena and Hehn, Michel and Keller, Niels and Petit-Watelot, Sebastien and Bargheer, Matias and Mangin, Stephane and Malinowski, Gregory}, title = {Femtosecond Laser-Excitation-Driven High Frequency Standing Spin Waves in Nanoscale Dielectric Thin Films of Iron Garnets}, series = {Physical review letters}, volume = {123}, journal = {Physical review letters}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.123.027202}, pages = {6}, year = {2019}, abstract = {We demonstrate that femtosecond laser pulses allow triggering high-frequency standing spin-wave modes in nanoscale thin films of a bismuth-substituted yttrium iron garnet. By varying the strength of the external magnetic field, we prove that two distinct branches of the dispersion relation are excited for all the modes. This is reflected in particular at a very weak magnetic field (similar to 33 mT) by a spin dynamics with a frequency up to 15 GHz, which is 15 times higher than the one associated with the ferromagnetic resonance mode. We argue that this phenomenon is triggered by ultrafast changes of the magnetic anisotropy via laser excitation of incoherent and coherent phonons. These findings open exciting prospects for ultrafast photo magnonics.}, language = {en} } @article{DebPopovaHehnetal.2019, author = {Deb, Marwan and Popova, Elena and Hehn, Michel and Keller, Niels and Petit-Watelot, Sebastien and Bargheer, Matias and Mangin, Stephane and Malinowski, Gregory}, title = {Damping of Standing Spin Waves in Bismuth-Substituted Yttrium Iron Garnet as Seen via the Time-Resolved Magneto-Optical Kerr Effect}, series = {Physical review applied}, volume = {12}, journal = {Physical review applied}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {2331-7019}, doi = {10.1103/PhysRevApplied.12.044006}, pages = {7}, year = {2019}, abstract = {We investigate spin-wave resonance modes and their damping in insulating thin films of bismuth-substituted yttrium iron garnet by performing femtosecond magneto-optical pump-probe experiments. For large magnetic fields in the range below the magnetization saturation, we find that the damping of high-order standing spin-wave (SSW) modes is about 40 times lower than that for the fundamental one. The observed phenomenon can be explained by considering different features of magnetic anisotropy and exchange fields that, respectively, define the precession frequency for fundamental and high-order SSWs. These results provide further insight into SSWs in iron garnets and may be exploited in many new photomagnonic devices.}, language = {en} }