@phdthesis{Pramanik2023, author = {Pramanik, Shreya}, title = {Protein reconstitution in giant vesicles}, doi = {10.25932/publishup-61278}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-612781}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 132}, year = {2023}, abstract = {Das Leben auf der Erde ist vielf{\"a}ltig und reicht von einzelligen Organismen bis hin zu mehrzelligen Lebewesen wie dem Menschen. Obwohl es Theorien dar{\"u}ber gibt, wie sich diese Organismen entwickelt haben k{\"o}nnten, verstehen wir nur wenig dar{\"u}ber, wie "Leben" aus Molek{\"u}len entstanden ist. Die synthetische Bottom-up-Biologie zielt darauf ab, minimale Zellen zu schaffen, indem sie verschiedene Module wie Kompartimentierung, Wachstum, Teilung und zellul{\"a}re Kommunikation kombiniert. Alle lebenden Zellen haben eine Membran, die sie von dem sie umgebenden w{\"a}ssrigen Medium trennt und sie sch{\"u}tzt. Dar{\"u}ber hinaus haben alle eukaryotischen Zellen Organellen, die von intrazellul{\"a}ren Membranen umschlossen sind. Jede Zellmembran besteht haupts{\"a}chlich aus einer Lipiddoppelschicht mit Membranproteinen. Lipide sind amphiphile Molek{\"u}le, die molekulare Doppelschichten aus zwei Lipid-Monoschichten oder Bl{\"a}ttchen bilden. Die hydrophoben Ketten der Lipide sind einander zugewandt, w{\"a}hrend ihre hydrophilen Kopfgruppen die Grenzfl{\"a}chen zur w{\"a}ssrigen Umgebung bilden. Riesenvesikel sind Modellmembransysteme, die Kompartimente mit einer Gr{\"o}ße von mehreren Mikrometern bilden und von einer einzigen Lipiddoppelschicht umgeben sind. Die Gr{\"o}ße der Riesenvesikel ist mit der Gr{\"o}ße von Zellen vergleichbar und macht sie zu guten Membranmodellen, die mit einem Lichtmikroskop untersucht werden k{\"o}nnen. Allerdings fehlen den Riesenvesikelmembranen nach der ersten Pr{\"a}paration Membranproteine, die in weiteren Pr{\"a}parationsschritten in diese Membranen eingebaut werden m{\"u}ssen. Je nach Protein kann es entweder {\"u}ber Ankerlipide an eines der Membranbl{\"a}ttchen gebunden oder {\"u}ber seine Transmembrandom{\"a}nen in die Lipiddoppelschicht eingebaut werden. Diese Arbeit befasst sich mit der Herstellung von Riesenvesikeln und der Rekonstitution von Proteinen in diesen Vesikeln. Außerdem wird ein mikrofluidischer Chip entworfen, der in verschiedenen Experimenten verwendet werden kann. Die Ergebnisse dieser Arbeit werden anderen Forschern helfen, die Protokolle f{\"u}r die Herstellung von GUVs zu verstehen, Proteine in GUVs zu rekonstituieren und Experimente mit dem mikrofluidischen Chip durchzuf{\"u}hren. Auf diese Weise wird die vorliegende Arbeit f{\"u}r das langfristige Ziel von Nutzen sein, die verschiedenen Module der synthetischen Biologie zu kombinieren, um eine Minimalzelle zu schaffen.}, language = {en} }