@article{ObrehtWoermerBraueretal.2020, author = {Obreht, Igor and W{\"o}rmer, Lars and Brauer, Achim and Wendt, Jenny and Alfken, Susanne and De Vleeschouwer, David and Elvert, Marcus and Hinrichs, Kai-Uwe}, title = {An annually resolved record of Western European vegetation response to Younger Dryas cooling}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {231}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2020.106198}, pages = {15}, year = {2020}, abstract = {The regional patterns and timing of the Younger Dryas cooling in the North Atlantic realm were complex and are mechanistically incompletely understood. To enhance understanding of regional climate patterns, we present molecular biomarker records at subannual to annual resolution by mass spectrometry imaging (MSI) of sediments from the Lake Meerfelder Maar covering the Allerod-Younger Dryas transition. These analyses are supported by conventional extraction-based molecular-isotopic analyses, which both validate the imaging results and constrain the sources of the target compounds. The targeted fatty acid biomarkers serve as a gauge of the response of the local aquatic and terrestrial ecosystem to climate change. Based on the comparison of our data with existing data from Meerfelder Maar, we analyse the short-term environmental evolution in Western Europe during the studied time interval and confirm the previously reported delayed hydrological response to Greenland cooling. However, despite a detected delay of Western European environmental change of similar to 135 years, our biomarker data show statistically significant correlation with deuterium excess in Greenland ice core at - annual resolution during this time-transgressive cooling. This suggests a coherent atmospheric forcing across the North Atlantic realm during this transition. We propose that Western European cooling was postponed due to major reorganization of the westerlies that were intermittently forcing warmer and wetter air masses from lower latitudes to Western Europe and thus resulted in delayed cooling relative to Greenland.}, language = {en} } @article{SaguTchewonpiZimmermannLandgraeberetal.2020, author = {Sagu Tchewonpi, Sorel and Zimmermann, Lynn and Landgr{\"a}ber, Eva and Homann, Thomas and Huschek, Gerd and {\"O}zpinar, Haydar and Schweigert, Florian J. and Rawel, Harshadrai Manilal}, title = {Comprehensive Characterization and Relative Quantification of α-Amylase/Trypsin Inhibitors from Wheat Cultivars by Targeted HPLC-MS/MS}, series = {Foods}, volume = {9}, journal = {Foods}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2304-8158}, doi = {10.3390/foods9101448}, pages = {25}, year = {2020}, abstract = {The α-amylase/trypsin inhibitors (ATIs) are discussed as being responsible for non-celiac wheat sensitivity (NCWS), besides being known as allergenic components for baker's asthma. Different approaches for characterization and quantification including proteomics-based methods for wheat ATIs have been documented. In these studies generally the major ATIs have been addressed. The challenge of current study was then to develop a more comprehensive workflow encompassing all reviewed wheat-ATI entries in UniProt database. To substantially test proof of concept, 46 German and Turkish wheat samples were used. Two extractions systems based on chloroform/methanol mixture (CM) and under buffered denaturing conditions were evaluated. Three aspects were optimized, tryptic digestion, chromatographic separation, and targeted tandem mass spectrometric analysis (HPLC-MS/MS). Preliminary characterization with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) documented the purity of the extracted ATIs with CM mixture and the amylase (60-80\%)/trypsin (10-20\%) inhibition demonstrated the bifunctional activity of ATIs. Thirteen (individual/common) biomarkers were established. Major ATIs (7-34\%) were differently represented in samples. Finally, to our knowledge, the proposed HPLC-MS/MS method allowed for the first time so far the analysis of all 14 reviewed wheat ATI entries reported.}, language = {en} } @misc{SaguTchewonpiZimmermannLandgraeberetal.2020, author = {Sagu Tchewonpi, Sorel and Zimmermann, Lynn and Landgr{\"a}ber, Eva and Homann, Thomas and Huschek, Gerd and {\"O}zpinar, Haydar and Schweigert, Florian J. and Rawel, Harshadrai Manilal}, title = {Comprehensive Characterization and Relative Quantification of α-Amylase/Trypsin Inhibitors from Wheat Cultivars by Targeted HPLC-MS/MS}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1028}, issn = {1866-8372}, doi = {10.25932/publishup-48611}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-486118}, pages = {27}, year = {2020}, abstract = {The α-amylase/trypsin inhibitors (ATIs) are discussed as being responsible for non-celiac wheat sensitivity (NCWS), besides being known as allergenic components for baker's asthma. Different approaches for characterization and quantification including proteomics-based methods for wheat ATIs have been documented. In these studies generally the major ATIs have been addressed. The challenge of current study was then to develop a more comprehensive workflow encompassing all reviewed wheat-ATI entries in UniProt database. To substantially test proof of concept, 46 German and Turkish wheat samples were used. Two extractions systems based on chloroform/methanol mixture (CM) and under buffered denaturing conditions were evaluated. Three aspects were optimized, tryptic digestion, chromatographic separation, and targeted tandem mass spectrometric analysis (HPLC-MS/MS). Preliminary characterization with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) documented the purity of the extracted ATIs with CM mixture and the amylase (60-80\%)/trypsin (10-20\%) inhibition demonstrated the bifunctional activity of ATIs. Thirteen (individual/common) biomarkers were established. Major ATIs (7-34\%) were differently represented in samples. Finally, to our knowledge, the proposed HPLC-MS/MS method allowed for the first time so far the analysis of all 14 reviewed wheat ATI entries reported.}, language = {en} }