@article{SchefflerImmenhauserPourteauetal.2019, author = {Scheffler, Franziska and Immenhauser, Adrian and Pourteau, Amaury and Natalicchio, Marcello and Candan, Osman and Oberh{\"a}nsli, Roland}, title = {A lost Tethyan evaporitic basin}, series = {Sedimentology : the journal of the International Association of Sedimentologists}, volume = {66}, journal = {Sedimentology : the journal of the International Association of Sedimentologists}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {0037-0746}, doi = {10.1111/sed.12606}, pages = {2627 -- 2660}, year = {2019}, abstract = {Ancient evaporite deposits are geological archives of depositional environments characterized by a long-term negative precipitation balance and bear evidence for global ocean element mass balance calculations. Here, Cretaceous selenite pseudomorphs from western Anatolia ('Rosetta Marble') — characterized by their exceptional morphological preservation — and their 'marine' geochemical signatures are described and interpreted in a process-oriented context. These rocks recorded Late Cretaceous high-pressure/low-temperature, subduction-related metamorphism with peak conditions of 1·0 to 1·2 GPa and 300 to 400°C. Metre-scale, rock-forming radiating rods, now present as fibrous calcite marble, clearly point to selenitic gypsum as the precursor mineral. Stratigraphic successions are recorded along a reconstructed proximal to distal transect. The cyclical alternation of selenite beds and radiolarian ribbon-bedded cherts in the distal portions are interpreted as a two type of seawater system. During arid intervals, shallow marine brines cascaded downward into basinal settings and induced precipitation. During more humid times, upwelling-induced radiolarian blooms caused the deposition of radiolarite facies. Interestingly, there is no comparable depositional setting known from the Cenozoic world. Meta-selenite geochemical data (δ13C, δ18O and 87Sr/86Sr) plot within the range of reconstructed middle Cretaceous seawater signatures. Possible sources for the 13C-enriched (mean 2·2 per mille) values include methanogenesis, gas hydrates and cold seep fluid exhalation. Spatially resolved component-specific analysis of a rock slab displays isotopic variances between meta-selenite crystals (mean δ13C 2·2 per mille) and host matrix (mean δ13C 1·3 per mille). The Cretaceous evaporite-pseudomorphs of Anatolia represent a basin wide event coeval with the Aptian evaporites of the Proto-Atlantic and the pseudomorphs share many attributes, including lateral distribution of 600 km and stratigraphic thickness of 1·5 to 2·0 km, with the evaporites formed during the younger Messinian salinity crisis. The Rosetta Marble of Anatolia may represent the best-preserved selenite pseudomorphs worldwide and have a clear potential to act as a template for the study of meta-selenite in deep time.}, language = {en} } @misc{MilewskiChabrillatBookhagen2020, author = {Milewski, Robert and Chabrillat, Sabine and Bookhagen, Bodo}, title = {Analyses of Namibian Seasonal Salt Pan Crust Dynamics and Climatic Drivers Using Landsat 8 Time-Series and Ground Data}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {988}, issn = {1866-8372}, doi = {10.25932/publishup-47568}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475685}, pages = {26}, year = {2020}, abstract = {Salt pans are highly dynamic environments that are difficult to study by in situ methods because of their harsh climatic conditions and large spatial areas. Remote sensing can help to elucidate their environmental dynamics and provide important constraints regarding their sedimentological, mineralogical, and hydrological evolution. This study utilizes spaceborne multitemporal multispectral optical data combined with spectral endmembers to document spatial distribution of surface crust types over time on the Omongwa pan located in the Namibian Kalahari. For this purpose, 49 surface samples were collected for spectral and mineralogical characterization during three field campaigns (2014-2016) reflecting different seasons and surface conditions of the salt pan. An approach was developed to allow the spatiotemporal analysis of the salt pan crust dynamics in a dense time-series consisting of 77 Landsat 8 cloud-free scenes between 2014 and 2017, covering at least three major wet-dry cycles. The established spectral analysis technique Sequential Maximum Angle Convex Cone (SMACC) extraction method was used to derive image endmembers from the Landsat time-series stack. Evaluation of the extracted endmember set revealed that the multispectral data allowed the differentiation of four endmembers associated with mineralogical mixtures of the crust's composition in dry conditions and three endmembers associated with flooded or muddy pan conditions. The dry crust endmember spectra have been identified in relation to visible, near infrared, and short-wave infrared (VNIR-SWIR) spectroscopy and X-ray diffraction (XRD) analyses of the collected surface samples. According these results, the spectral endmembers are interpreted as efflorescent halite crust, mixed halite-gypsum crust, mixed calcite quartz sepiolite crust, and gypsum crust. For each Landsat scene the spatial distribution of these crust types was mapped with the Spectral Angle Mapper (SAM) method and significant spatiotemporal dynamics of the major surface crust types were observed. Further, the surface crust dynamics were analyzed in comparison with the pan's moisture regime and other climatic parameters. The results show that the crust dynamics are mainly driven by flooding events in the wet season, but are also influenced by temperature and aeolian activity in the dry season. The approach utilized in this study combines the advantages of multitemporal satellite data for temporal event characterization with advantages from hyperspectral methods for the image and ground data analyses that allow improved mineralogical differentiation and characterization.}, language = {en} } @article{MilewskiChabrillatBookhagen2020, author = {Milewski, Robert and Chabrillat, Sabine and Bookhagen, Bodo}, title = {Analyses of Namibian Seasonal Salt Pan Crust Dynamics and Climatic Drivers Using Landsat 8 Time-Series and Ground Data}, series = {Remote Sensing}, journal = {Remote Sensing}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs12030474}, pages = {24}, year = {2020}, abstract = {Salt pans are highly dynamic environments that are difficult to study by in situ methods because of their harsh climatic conditions and large spatial areas. Remote sensing can help to elucidate their environmental dynamics and provide important constraints regarding their sedimentological, mineralogical, and hydrological evolution. This study utilizes spaceborne multitemporal multispectral optical data combined with spectral endmembers to document spatial distribution of surface crust types over time on the Omongwa pan located in the Namibian Kalahari. For this purpose, 49 surface samples were collected for spectral and mineralogical characterization during three field campaigns (2014-2016) reflecting different seasons and surface conditions of the salt pan. An approach was developed to allow the spatiotemporal analysis of the salt pan crust dynamics in a dense time-series consisting of 77 Landsat 8 cloud-free scenes between 2014 and 2017, covering at least three major wet-dry cycles. The established spectral analysis technique Sequential Maximum Angle Convex Cone (SMACC) extraction method was used to derive image endmembers from the Landsat time-series stack. Evaluation of the extracted endmember set revealed that the multispectral data allowed the differentiation of four endmembers associated with mineralogical mixtures of the crust's composition in dry conditions and three endmembers associated with flooded or muddy pan conditions. The dry crust endmember spectra have been identified in relation to visible, near infrared, and short-wave infrared (VNIR-SWIR) spectroscopy and X-ray diffraction (XRD) analyses of the collected surface samples. According these results, the spectral endmembers are interpreted as efflorescent halite crust, mixed halite-gypsum crust, mixed calcite quartz sepiolite crust, and gypsum crust. For each Landsat scene the spatial distribution of these crust types was mapped with the Spectral Angle Mapper (SAM) method and significant spatiotemporal dynamics of the major surface crust types were observed. Further, the surface crust dynamics were analyzed in comparison with the pan's moisture regime and other climatic parameters. The results show that the crust dynamics are mainly driven by flooding events in the wet season, but are also influenced by temperature and aeolian activity in the dry season. The approach utilized in this study combines the advantages of multitemporal satellite data for temporal event characterization with advantages from hyperspectral methods for the image and ground data analyses that allow improved mineralogical differentiation and characterization.}, language = {en} } @article{AnoopPrasadPlessenetal.2013, author = {Anoop, Ambili and Prasad, S. and Plessen, Birgit and Basavaiah, Nathani and Gaye, B. and Naumann, R. and Menzel, P. and Weise, S. and Brauer, Achim}, title = {Palaeoenvironmental implications of evaporative gaylussite crystals from Lonar Lake, central India}, series = {Journal of quaternary science}, volume = {28}, journal = {Journal of quaternary science}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0267-8179}, doi = {10.1002/jqs.2625}, pages = {349 -- 359}, year = {2013}, abstract = {We have undertaken petrographic, mineralogical, geochemical and isotopic investigations on carbonate minerals found within a 10-m-long core from Lonar Lake, central India, with the aim of evaluating their potential as palaeoenvironmental proxies. The core encompasses the entire Holocene and is the first well-dated high-resolution record from central India. While calcite and/or aragonite were found throughout the core, the mineral gaylussite was found only in two specific intervals (46303890 and 2040560 cal a BP). Hydrochemical and isotope data from inflowing streams and lake waters indicate that evaporitic processes play a dominant role in the precipitation of carbonates within this lake. Isotopic (18O and 13C) studies on the evaporative gaylussite crystals and residual bulk carbonates (calcite) from the long core show that evaporation is the major control on 18O enrichment in both the minerals. However, in case of 13C additional mechanisms, for example methanogenesis (gaylussite) and phytoplankton productivity (calcium carbonate), play an additional important role in some intervals. We also discuss the relevance of our investigation for palaeoclimate reconstruction and late Holocene monsoon variability.}, language = {en} }