@phdthesis{Welsch2022, author = {Welsch, Maryna}, title = {Investigation of the stress tolerance regulatory network integration of the NAC transcription factor JUNGBRUNNEN1 (JUB1)}, doi = {10.25932/publishup-54731}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-547310}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 116}, year = {2022}, abstract = {The NAC transcription factor (TF) JUNGBRUNNEN1 (JUB1) is an important negative regulator of plant senescence, as well as of gibberellic acid (GA) and brassinosteroid (BR) biosynthesis in Arabidopsis thaliana. Overexpression of JUB1 promotes longevity and enhances tolerance to drought and other abiotic stresses. A similar role of JUB1 has been observed in other plant species, including tomato and banana. Our data show that JUB1 overexpressors (JUB1-OXs) accumulate higher levels of proline than WT plants under control conditions, during the onset of drought stress, and thereafter. We identified that overexpression of JUB1 induces key proline biosynthesis and suppresses key proline degradation genes. Furthermore, bZIP63, the transcription factor involved in proline metabolism, was identified as a novel downstream target of JUB1 by Yeast One-Hybrid (Y1H) analysis and Chromatin immunoprecipitation (ChIP). However, based on Electrophoretic Mobility Shift Assay (EMSA), direct binding of JUB1 to bZIP63 could not be confirmed. Our data indicate that JUB1-OX plants exhibit reduced stomatal conductance under control conditions. However, selective overexpression of JUB1 in guard cells did not improve drought stress tolerance in Arabidopsis. Moreover, the drought-tolerant phenotype of JUB1 overexpressors does not solely depend on the transcriptional control of the DREB2A gene. Thus, our data suggest that JUB1 confers tolerance to drought stress by regulating multiple components. Until today, none of the previous studies on JUB1´s regulatory network focused on identifying protein-protein interactions. We, therefore, performed a yeast two-hybrid screen (Y2H) which identified several protein interactors of JUB1, two of which are the calcium-binding proteins CaM1 and CaM4. Both proteins interact with JUB1 in the nucleus of Arabidopsis protoplasts. Moreover, JUB1 is expressed with CaM1 and CaM4 under the same conditions. Since CaM1.1 and CaM4.1 encode proteins with identical amino acid sequences, all further experiments were performed with constructs involving the CaM4 coding sequence. Our data show that JUB1 harbors multiple CaM-binding sites, which are localized in both the N-terminal and C-terminal regions of the protein. One of the CaM-binding sites, localized in the DNA-binding domain of JUB1, was identified as a functional CaM-binding site since its mutation strongly reduced the binding of CaM4 to JUB1. Furthermore, JUB1 transactivates expression of the stress-related gene DREB2A in mesophyll cells; this effect is significantly reduced when the calcium-binding protein CaM4 is expressed as well. Overexpression of both genes in Arabidopsis results in early senescence observed through lower chlorophyll content and an enhanced expression of senescence-associated genes (SAGs) when compared with single JUB1 overexpressors. Our data also show that JUB1 and CaM4 proteins interact in senescent leaves, which have increased Ca2+ levels when compared to young leaves. Collectively, our data indicate that JUB1 activity towards its downstream targets is fine-tuned by calcium-binding proteins during leaf senescence.}, language = {en} } @article{AwaisAhmadKhanetal.2018, author = {Awais, Muhammad and Ahmad, Rafiq and Khan, Nadeem and Garapati, Prashanth and Shahzad, Muhammad and Afroz, Amber and Rashid, Umer and Khan, Sabaz Ali}, title = {Transformation of tomato variety rio grande with drought resistant transcription factor gene ATAF1 and its molecular analysis}, series = {Pakistan Journal of Botany}, volume = {50}, journal = {Pakistan Journal of Botany}, number = {5}, publisher = {Pakistan botanic soc}, address = {Karachi}, issn = {0556-3321}, pages = {1811 -- 1820}, year = {2018}, abstract = {Tomato (Solanum lycopersicum L.) being an important vegetable is cultivated and used throughout the world. It not only contributes in fulfilling the basic nutritional requirements of the human body but also has many health benefits due to its rich biochemical composition. However, its production at large scale is hampered by many limiting factors such as biotic and abiotic stresses. Among the different abiotic stresses, drought poses drastic impact on tomato yield. Drought stress is genetically regulated by many transcription factors that not only regulate the stress responsive mechanism but also facilitate the growth and development of tomato plants. NAC is an important stress related transcription factor genes family, and the ATAF1 gene, a member of this family, is involved in ABA signaling and stress response. In this study, tomato variety Rio Drande was transformed with drought resistant ATAF1 gene via Agrobacterium mediated gene transformation method. The ATAF1 gene was first cloned in the pK7WFG2 vector having kanamycin selectable marker and then it was introduced in the Agrobacterium tumefaciens strain GV3101 through heat shock method. The tomato cotyledon and hypocotyl ex-plants of variety "Rio Ggrande" were cultured on callus induction medium (MS + 2.5 mg/L IAA + 2 mg/L BAP). The calli were then infected with Agrobacterium tumefaciens strain GV3101 containing ATAF1 gene and selection was carried out on the kanamycin selectable medium (MS + 100 mg/L Kan), and were regenerated on MS medium with 1 mg/L IAA + 1 mg/L BAP. Out of 216 putative transformed calli, 13 calli were able to regenerate on the selection medium. Of the 13 calli, three transgenic tomato plantlets were recovered, and these were confirmed through PCR analysis for the presence of 432 bp fragment of ATAF1 gene. The transformation protocol reported here can be used to generate drought resistant tomato plants in future.}, language = {en} } @article{IvanovBeninaPetrovetal.2014, author = {Ivanov, Ivan and Benina, Maria and Petrov, Veselin and Gechev, Tsanko S. and Toneva, Valentina}, title = {Metabolic responses of gloxinia perennis to dehydration and rehydration}, series = {COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES}, volume = {67}, journal = {COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES}, number = {12}, publisher = {Publ. House of the Bulgarian Acad. of Sciences}, address = {Sofia}, issn = {1310-1331}, pages = {1657 -- 1662}, year = {2014}, abstract = {Gloxinia perennis is a species from the family Gesneriaceae with little known physiology, particularly in respect to responses to dehydration. G. perennis survived water deprivation for a month and then quickly recovered upon rehydration. The slow loss of water was in contrast with the quick dehydration of other Gesnerian species - Boea hygrometrica, Ramonda serbica, and Haber lea rhodopensis. Furthermore, a significant difference between older and younger leaves of G. perennis was observed. While the relative water content in the early stages of water deprivation was reduced to 65\% in the old leaves, it was not or slightly reduced in the young ones, implying a mechanism that protects specifically the younger leaves from dehydration. Water deprivation induced accumulation of gama-aminobutyric acid and sugars like sucrose and raffinose, but decreased the levels of amino acids such as glycine, leucine, and isoleucine. The levels of these amino acids recovered after rehydration and in some cases like glycine and isoleucine were even higher in rehydrated leaves compared with unstressed controls. We conclude that G.perennis can survive prolonged drought stress but its responses to dehydration are different from the resurrection species from Gesneriaceae. All this makes G. perennis a good model that can be used for comparative genomics and metabolomics of Gesneriads exposed to desiccation.}, language = {en} } @phdthesis{Geissler2008, author = {Geißler, Katja}, title = {Lebensstrategien seltener Stromtalpflanzen : aut{\"o}kologische Untersuchung von Cnidium dubium, Gratiola officinalis und Juncus atratus unter besonderer Ber{\"u}cksichtigung ihrer Stressresistenz}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17468}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Die vorliegende Dissertation behandelt die {\"O}kologie von Cnidium dubium (Schkuhr) Thell. (Sumpf-Brenndolde), Gratiola officinalis L. (Gottes-Gnadenkraut) und Juncus atratus Krocker (Schwarze Binse), drei gef{\"a}hrdeten Arten, die als sogenannte Stromtalpflanzen in Mitteleuropa in ihrem Vorkommen eng an die Flussauen gebunden sind. Die Arbeit basiert auf verschiedenen Simulationsexperimenten und Feldstudien in der Unteren Havelniederung, einem „Feuchtgebiet von internationaler Bedeutung". Sie behandelt Themenkomplexe wie das Samenbankverhalten, die Samenkeimung, die Stickstofflimitierung, die Konkurrenzkraft, das Verhalten der Pflanzen nach einer Sommertrockenheit und nach einer Winter/Fr{\"u}hjahrs{\"u}berflutung. Ferner widmet sie sich der Populationsbiologie der Arten und dem Verhalten der Pflanzen nach besonderen St{\"o}rungsereignissen wie Mahd, Herbivorie und der Sommerflut 2002. Der Leser erf{\"a}hrt, wie die Pflanzen in verschiedenen Lebensphasen auf die auentypische Umwelt reagieren und erh{\"a}lt umfassende Einblicke in physiologische Mechanismen, die der Anpassung an die typischen Bedingungen einer mitteleurop{\"a}ischen Flussaue dienen. Eine Interpretation der Ergebnisse zeigt auf, welche der spezifischen Eigenschaften zur Gef{\"a}hrdung der drei Stromtalarten beitragen. Die Arbeit ist f{\"u}r den Arten-, Biotop- und Landschaftsschutz interessant. Dar{\"u}ber hinaus bietet sie zahlreiche Ankn{\"u}pfungspunkte zur {\"o}kophysiologischen Grundlagenforschung. Die verst{\"a}rkte Nutzung physiologischer Methoden bei der Kl{\"a}rung {\"o}kologischer Fragestellungen wird angeregt.}, language = {de} }