@article{AfantenosPeldszusStede2018, author = {Afantenos, Stergos and Peldszus, Andreas and Stede, Manfred}, title = {Comparing decoding mechanisms for parsing argumentative structures}, series = {Argument \& Computation}, volume = {9}, journal = {Argument \& Computation}, number = {3}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1946-2166}, doi = {10.3233/AAC-180033}, pages = {177 -- 192}, year = {2018}, abstract = {Parsing of argumentative structures has become a very active line of research in recent years. Like discourse parsing or any other natural language task that requires prediction of linguistic structures, most approaches choose to learn a local model and then perform global decoding over the local probability distributions, often imposing constraints that are specific to the task at hand. Specifically for argumentation parsing, two decoding approaches have been recently proposed: Minimum Spanning Trees (MST) and Integer Linear Programming (ILP), following similar trends in discourse parsing. In contrast to discourse parsing though, where trees are not always used as underlying annotation schemes, argumentation structures so far have always been represented with trees. Using the 'argumentative microtext corpus' [in: Argumentation and Reasoned Action: Proceedings of the 1st European Conference on Argumentation, Lisbon 2015 / Vol. 2, College Publications, London, 2016, pp. 801-815] as underlying data and replicating three different decoding mechanisms, in this paper we propose a novel ILP decoder and an extension to our earlier MST work, and then thoroughly compare the approaches. The result is that our new decoder outperforms related work in important respects, and that in general, ILP and MST yield very similar performance.}, language = {en} } @misc{AfantenosPeldszusStede2018, author = {Afantenos, Stergos and Peldszus, Andreas and Stede, Manfred}, title = {Comparing decoding mechanisms for parsing argumentative structures}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1062}, issn = {1866-8372}, doi = {10.25932/publishup-47052}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470527}, pages = {18}, year = {2018}, abstract = {Parsing of argumentative structures has become a very active line of research in recent years. Like discourse parsing or any other natural language task that requires prediction of linguistic structures, most approaches choose to learn a local model and then perform global decoding over the local probability distributions, often imposing constraints that are specific to the task at hand. Specifically for argumentation parsing, two decoding approaches have been recently proposed: Minimum Spanning Trees (MST) and Integer Linear Programming (ILP), following similar trends in discourse parsing. In contrast to discourse parsing though, where trees are not always used as underlying annotation schemes, argumentation structures so far have always been represented with trees. Using the 'argumentative microtext corpus' [in: Argumentation and Reasoned Action: Proceedings of the 1st European Conference on Argumentation, Lisbon 2015 / Vol. 2, College Publications, London, 2016, pp. 801-815] as underlying data and replicating three different decoding mechanisms, in this paper we propose a novel ILP decoder and an extension to our earlier MST work, and then thoroughly compare the approaches. The result is that our new decoder outperforms related work in important respects, and that in general, ILP and MST yield very similar performance.}, language = {en} } @phdthesis{Peldszus2017, author = {Peldszus, Andreas}, title = {Automatic recognition of argumentation structure in short monological texts}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421441}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 252}, year = {2017}, abstract = {The aim of this thesis is to develop approaches to automatically recognise the structure of argumentation in short monological texts. This amounts to identifying the central claim of the text, supporting premises, possible objections, and counter-objections to these objections, and connecting them correspondingly to a structure that adequately describes the argumentation presented in the text. The first step towards such an automatic analysis of the structure of argumentation is to know how to represent it. We systematically review the literature on theories of discourse, as well as on theories of the structure of argumentation against a set of requirements and desiderata, and identify the theory of J. B. Freeman (1991, 2011) as a suitable candidate to represent argumentation structure. Based on this, a scheme is derived that is able to represent complex argumentative structures and can cope with various segmentation issues typically occurring in authentic text. In order to empirically test our scheme for reliability of annotation, we conduct several annotation experiments, the most important of which assesses the agreement in reconstructing argumentation structure. The results show that expert annotators produce very reliable annotations, while the results of non-expert annotators highly depend on their training in and commitment to the task. We then introduce the 'microtext' corpus, a collection of short argumentative texts. We report on the creation, translation, and annotation of it and provide a variety of statistics. It is the first parallel corpus (with a German and English version) annotated with argumentation structure, and -- thanks to the work of our colleagues -- also the first annotated according to multiple theories of (global) discourse structure. The corpus is then used to develop and evaluate approaches to automatically predict argumentation structures in a series of six studies: The first two of them focus on learning local models for different aspects of argumentation structure. In the third study, we develop the main approach proposed in this thesis for predicting globally optimal argumentation structures: the 'evidence graph' model. This model is then systematically compared to other approaches in the fourth study, and achieves state-of-the-art results on the microtext corpus. The remaining two studies aim to demonstrate the versatility and elegance of the proposed approach by predicting argumentation structures of different granularity from text, and finally by using it to translate rhetorical structure representations into argumentation structures.}, language = {en} }