@article{deAbreueLimaLeifelsNikoloski2018, author = {de Abreu e Lima, Francisco Anastacio and Leifels, Lydia and Nikoloski, Zoran}, title = {Regression-based modeling of complex plant traits based on metabolomics data}, series = {Plant Metabolomics}, volume = {1778}, journal = {Plant Metabolomics}, publisher = {Humana Press Inc.}, address = {New York}, isbn = {978-1-4939-7819-9}, issn = {1064-3745}, doi = {10.1007/978-1-4939-7819-9_23}, pages = {321 -- 327}, year = {2018}, abstract = {Bridging metabolomics with plant phenotypic responses is challenging. Multivariate analyses account for the existing dependencies among metabolites, and regression models in particular capture such dependencies in search for association with a given trait. However, special care should be undertaken with metabolomics data. Here we propose a modeling workflow that considers all caveats imposed by such large data sets.}, language = {en} } @article{EdlichMuthMurayaAltmannetal.2016, author = {Edlich-Muth, Christian and Muraya, Moses M. and Altmann, Thomas and Selbig, Joachim}, title = {Phenomic prediction of maize hybrids}, series = {Biosystems : journal of biological and information processing sciences}, volume = {146}, journal = {Biosystems : journal of biological and information processing sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {0303-2647}, doi = {10.1016/j.biosystems.2016.05.008}, pages = {102 -- 109}, year = {2016}, abstract = {Phenomic experiments are carried out in large-scale plant phenotyping facilities that acquire a large number of pictures of hundreds of plants simultaneously. With the aid of automated image processing, the data are converted into genotype-feature matrices that cover many consecutive days of development. Here, we explore the possibility of predicting the biomass of the fully grown plant from early developmental stage image-derived features. We performed phenomic experiments on 195 inbred and 382 hybrid maizes varieties and followed their progress from 16 days after sowing (DAS) to 48 DAS with 129 image-derived features. By applying sparse regression methods, we show that 73\% of the variance in hybrid fresh weight of fully-grown plants is explained by about 20 features at the three-leaf-stage or earlier. Dry weight prediction explained over 90\% of the variance. When phenomic features of parental inbred lines were used as predictors of hybrid biomass, the proportion of variance explained was 42 and 45\%, for fresh weight and dry weight models consisting of 35 and 36 features, respectively. These models were very robust, showing only a small amount of variation in performance over the time scale of the experiment. We also examined mid-parent heterosis in phenomic features. Feature heterosis displayed a large degree of variance which resulted in prediction performance that was less robust than models of either parental or hybrid predictors. Our results show that phenomic prediction is a viable alternative to genomic and metabolic prediction of hybrid performance. In particular, the utility of early-stage parental lines is very encouraging. (C) 2016 Elsevier Ireland Ltd. All rights reserved.}, language = {en} } @phdthesis{Raetsch2001, author = {R{\"a}tsch, Gunnar}, title = {Robust boosting via convex optimization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000399}, school = {Universit{\"a}t Potsdam}, year = {2001}, abstract = {In dieser Arbeit werden statistische Lernprobleme betrachtet. Lernmaschinen extrahieren Informationen aus einer gegebenen Menge von Trainingsmustern, so daß sie in der Lage sind, Eigenschaften von bisher ungesehenen Mustern - z.B. eine Klassenzugeh{\"o}rigkeit - vorherzusagen. Wir betrachten den Fall, bei dem die resultierende Klassifikations- oder Regressionsregel aus einfachen Regeln - den Basishypothesen - zusammengesetzt ist. Die sogenannten Boosting Algorithmen erzeugen iterativ eine gewichtete Summe von Basishypothesen, die gut auf ungesehenen Mustern vorhersagen. Die Arbeit behandelt folgende Sachverhalte: o Die zur Analyse von Boosting-Methoden geeignete Statistische Lerntheorie. Wir studieren lerntheoretische Garantien zur Absch{\"a}tzung der Vorhersagequalit{\"a}t auf ungesehenen Mustern. K{\"u}rzlich haben sich sogenannte Klassifikationstechniken mit großem Margin als ein praktisches Ergebnis dieser Theorie herausgestellt - insbesondere Boosting und Support-Vektor-Maschinen. Ein großer Margin impliziert eine hohe Vorhersagequalit{\"a}t der Entscheidungsregel. Deshalb wird analysiert, wie groß der Margin bei Boosting ist und ein verbesserter Algorithmus vorgeschlagen, der effizient Regeln mit maximalem Margin erzeugt. o Was ist der Zusammenhang von Boosting und Techniken der konvexen Optimierung? Um die Eigenschaften der entstehenden Klassifikations- oder Regressionsregeln zu analysieren, ist es sehr wichtig zu verstehen, ob und unter welchen Bedingungen iterative Algorithmen wie Boosting konvergieren. Wir zeigen, daß solche Algorithmen benutzt werden koennen, um sehr große Optimierungsprobleme mit Nebenbedingungen zu l{\"o}sen, deren L{\"o}sung sich gut charakterisieren laesst. Dazu werden Verbindungen zum Wissenschaftsgebiet der konvexen Optimierung aufgezeigt und ausgenutzt, um Konvergenzgarantien f{\"u}r eine große Familie von Boosting-{\"a}hnlichen Algorithmen zu geben. o Kann man Boosting robust gegen{\"u}ber Meßfehlern und Ausreissern in den Daten machen? Ein Problem bisheriger Boosting-Methoden ist die relativ hohe Sensitivit{\"a}t gegen{\"u}ber Messungenauigkeiten und Meßfehlern in der Trainingsdatenmenge. Um dieses Problem zu beheben, wird die sogenannte 'Soft-Margin' Idee, die beim Support-Vector Lernen schon benutzt wird, auf Boosting {\"u}bertragen. Das f{\"u}hrt zu theoretisch gut motivierten, regularisierten Algorithmen, die ein hohes Maß an Robustheit aufweisen. o Wie kann man die Anwendbarkeit von Boosting auf Regressionsprobleme erweitern? Boosting-Methoden wurden urspr{\"u}nglich f{\"u}r Klassifikationsprobleme entwickelt. Um die Anwendbarkeit auf Regressionsprobleme zu erweitern, werden die vorherigen Konvergenzresultate benutzt und neue Boosting-{\"a}hnliche Algorithmen zur Regression entwickelt. Wir zeigen, daß diese Algorithmen gute theoretische und praktische Eigenschaften haben. o Ist Boosting praktisch anwendbar? Die dargestellten theoretischen Ergebnisse werden begleitet von Simulationsergebnissen, entweder, um bestimmte Eigenschaften von Algorithmen zu illustrieren, oder um zu zeigen, daß sie in der Praxis tats{\"a}chlich gut funktionieren und direkt einsetzbar sind. Die praktische Relevanz der entwickelten Methoden wird in der Analyse chaotischer Zeitreihen und durch industrielle Anwendungen wie ein Stromverbrauch-{\"U}berwachungssystem und bei der Entwicklung neuer Medikamente illustriert.}, language = {en} }