@article{SundeGrijsSubramanianetal.2017, author = {Sun, Ning-Chen and de Grijs, Richard and Subramanian, Smitha and Cioni, Maria-Rosa L. and Rubele, Stefano and Bekki, Kenji and Ivanov, Valentin D. and Piatti, Andr{\´e}s E. and Ripepi, Vincenzo}, title = {The VMC Survey. XXII. Hierarchical star formation in the 30 Doradus-N158-N159-N160 star-forming complex}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {835}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {Institute of Physics Publ.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/835/2/171}, pages = {10}, year = {2017}, abstract = {We study the hierarchical stellar structures in a similar to 1.5 deg(2) area covering the 30. Doradus-N158-N159-N160 starforming complex with the VISTA Survey of. Magellanic Clouds. Based on the young upper main-sequence stars, we find that the surface densities cover a wide range of values, from log(Sigma.pc(2))less than or similar to -2.0 to log(Sigma. pc(2)) greater than or similar to 0.0. Their distributions are highly non-uniform, showing groups that frequently have subgroups inside. The sizes of the stellar groups do not exhibit characteristic values, and range continuously from several parsecs to more than 100. pc; the cumulative size distribution can be well described by a single power law, with the power-law index indicating a projected fractal dimension D-2 = 1.6 +/- 0.3. We suggest that the phenomena revealed here support a scenario of hierarchical star formation. Comparisons with other star-forming regions and galaxies are also discussed.}, language = {en} } @article{SubramanianRubeleSunetal.2017, author = {Subramanian, Smitha and Rubele, Stefano and Sun, Ning-Chen and Girardi, Leo and de Grijs, Richard and van Loon, Jacco Th. and Cioni, Maria-Rosa L. and Piatti, Andres E. and Bekki, Kenji and Emerson, Jim and Ivanov, Valentin D. and Kerber, Leandro and Marconi, Marcella and Ripepi, Vincenzo and Tatton, Benjamin L.}, title = {The VMC Survey - XXIV. Signatures of tidally stripped stellar populations from the inner Small Magellanic Cloud}, series = {Monthly notices of the Royal Astronomical Society}, volume = {467}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx205}, pages = {2980 -- 2995}, year = {2017}, language = {en} } @article{SundeGrijsSubramanianetal.2017, author = {Sun, Ning-Chen and de Grijs, Richard and Subramanian, Smitha and Bekki, Kenji and Bell, Cameron P. M. and Cioni, Maria-Rosa L. and Ivanov, Valentin D. and Marconi, Marcella and Oliveira, Joana M. and Piatti, Andres E. and Ripepi, Vincenzo and Rubele, Stefano and Tatton, Ben L. and van Loon, Jacco Th.}, title = {The VMC Survey. XXII. Hierarchical Star Formation in the 30 Doradus-N158-N159-N160 Star-forming Complex}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {849}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa911e}, pages = {16}, year = {2017}, abstract = {Star formation is a hierarchical process, forming young stellar structures of star clusters, associations, and complexes over a wide range of scales. The star-forming complex in the bar region of the Large Magellanic Cloud is investigated with upper main-sequence stars observed by the VISTA Survey of the Magellanic Clouds. The upper main-sequence stars exhibit highly nonuniform distributions. Young stellar structures inside the complex are identified from the stellar density map as density enhancements of different significance levels. We find that these structures are hierarchically organized such that larger, lower-density structures contain one or several smaller, higher-density ones. They follow power-law size and mass distributions, as well as a lognormal surface density distribution. All these results support a scenario of hierarchical star formation regulated by turbulence. The temporal evolution of young stellar structures is explored by using subsamples of upper main-sequence stars with different magnitude and age ranges. While the youngest subsample, with a median age of log(tau/yr) = 7.2, contains the most substructure, progressively older ones are less and less substructured. The oldest subsample, with a median age of log(tau/yr) = 8.0, is almost indistinguishable from a uniform distribution on spatial scales of 30-300. pc, suggesting that the young stellar structures are completely dispersed on a timescale of similar to 100. Myr. These results are consistent with the characteristics of the 30. Doradus complex and the entire Large Magellanic Cloud, suggesting no significant environmental effects. We further point out that the fractal dimension may be method dependent for stellar samples with significant age spreads.}, language = {en} } @article{PiattiIvanovRubeleetal.2016, author = {Piatti, Andres E. and Ivanov, Valentin D. and Rubele, Stefano and Marconi, Marcella and Ripepi, Vincenzo and Cioni, Maria-Rosa L. and Oliveira, Joana M. and Bekki, Kenji}, title = {The VMC Survey - XXI. New star cluster candidates discovered from infrared photometry in the Small Magellanic Cloud}, series = {Monthly notices of the Royal Astronomical Society}, volume = {460}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw1000}, pages = {383 -- 395}, year = {2016}, language = {en} } @article{PiattideGrijsRubeleetal.2015, author = {Piatti, Andres E. and de Grijs, Richard and Rubele, Stefano and Cioni, Maria-Rosa L. and Ripepi, Vincenzo and Kerber, Leandro}, title = {The VMC survey - XV. The Small Magellanic Cloud-Bridge connection history as traced by their star cluster populations}, series = {Monthly notices of the Royal Astronomical Society}, volume = {450}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stv635}, pages = {552 -- 563}, year = {2015}, abstract = {We present results based on YJK(s) photometry of star clusters located in the outermost, eastern region of the Small Magellanic Cloud (SMC). We analysed a total of 51 catalogued clusters whose colour-magnitude diagrams (CMDs), having been cleaned from field-star contamination, were used to assess the clusters' reality and estimate ages of the genuine systems. Based on CMD analysis, 15 catalogued clusters were found to be possible non-genuine aggregates. We investigated the properties of 80 per cent of the catalogued clusters in this part of the SMC by enlarging our sample with previously obtained cluster ages, adopting a homogeneous scale for all. Their spatial distribution suggests that the oldest clusters, log(t yr(-1)) >= 9.6, are in general located at greater distances to the galaxy's centre than their younger counterparts - 9.0 <= log(t yr(-1)) <= 9.4 - while two excesses of clusters are seen at log(t yr(-1)) similar to 9.2 and log(t yr(-1)) similar to 9.7. We found a trail of younger clusters which follow the wing/bridge components. This long spatial sequence does not only harbour very young clusters, log(t yr(-1)) similar to 7.3, but it also hosts some of intermediate ages, log(t yr(-1)) similar to 9.1. The derived cluster and field-star formation frequencies as a function of age are different. The most surprising feature is an observed excess of clusters with ages of log(t yr(-1)) <9.0, which could have been induced by interactions with the LMC.}, language = {en} } @article{MuravevaPalmerClementinietal.2015, author = {Muraveva, Tatiana and Palmer, Max and Clementini, Gisella and Luri, Xavier and Cioni, Maria-Rosa L. and Moretti, Maria Ida and Marconi, Marcella and Ripepi, Vincenzo and Rubele, Stefano}, title = {New near-infrared period-luminosity-metallicity relations for RR lyrae stars and the outlock for GAIA}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {807}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/807/2/127}, pages = {17}, year = {2015}, abstract = {We present results of the analysis of 70 RR Lyrae stars located in the bar of the Large Magellanic Cloud (LMC). Combining the spectroscopically determined metallicity of these stars from the literature with precise periods from the OGLE III catalog and multi-epoch K-s photometry from the VISTA survey of the Magellanic Clouds system, we derive a new near-infrared period-luminosity-metallicity (PLKsZ) relation for RR Lyrae variables. In order to fit the relation we use a fitting method developed specifically for this study. The zero-point of the relation is estimated two different ways: by assuming the value of the distance to the LMC and by using Hubble Space Telescope parallaxes of five RR Lyrae stars in the Milky Way (MW). The difference in distance moduli derived by applying these two approaches is similar to 0.2 mag. To investigate this point further we derive the PL(Ks)Z relation based on 23 MW RR Lyrae stars that had been analyzed in Baade-Wesselink studies. We compared the derived PL(Ks)Z relations for RR Lyrae stars in the MW and LMC. Slopes and zero-points are different, but still consistent within the errors. The shallow slope of the metallicity term is confirmed by both LMC and MW variables. The astrometric space mission Gaia is expected to provide a huge contribution to the determination of the RR Lyrae PL(Ks)Z relation; however, calculating an absolute magnitude from the trigonometric parallax of each star and fitting a PL(Ks)Z relation directly to period and absolute magnitude leads to biased results. We present a tool to achieve an unbiased solution by modeling the data and inferring the slope and zero-point of the relation via statistical methods.}, language = {en} } @article{PiattideGrijsRipepietal.2015, author = {Piatti, Andres E. and de Grijs, Richard and Ripepi, Vincenzo and Ivanov, Valentin D. and Cioni, Maria-Rosa L. and Marconi, Marcella and Rubele, Stefano and Bekki, Kenji and For, Bi-Qing}, title = {The VMC survey - XVI. Spatial variation of the cluster formation activity in the innermost regions of the Large Magellanic Cloud}, series = {Monthly notices of the Royal Astronomical Society}, volume = {454}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stv2054}, pages = {839 -- 848}, year = {2015}, language = {en} } @article{ZhangLideGrijsetal.2015, author = {Zhang, Chaoli and Li, Chengyuan and de Grijs, Richard and Bekki, Kenji and Deng, Licai and Zaggia, Simone and Rubele, Stefano and Piatti, Andres E. and Cioni, Maria-Rosa L. and Emerson, Jim and For, Bi-Qing and Ripepi, Vincenzo and Marconi, Marcella and Ivanov, Valentin D. and Chen, Li}, title = {The vmc survey. XVIII. radial dependence of the Low-Mass, 0.55-0.82M(circle dot) stellar mass function in the galactic globular cluster 47 tucanae}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {815}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/815/2/95}, pages = {9}, year = {2015}, language = {en} }