@phdthesis{FortesMartin2023, author = {Fortes Mart{\´i}n, Rebeca}, title = {Water-in-oil microemulsions as soft-templates to mediate nanoparticle interfacial assembly into hybrid nanostructures}, doi = {10.25932/publishup-57180}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571801}, school = {Universit{\"a}t Potsdam}, pages = {119}, year = {2023}, abstract = {Hybrid nanomaterials offer the combination of individual properties of different types of nanoparticles. Some strategies for the development of new nanostructures in larger scale rely on the self-assembly of nanoparticles as a bottom-up approach. The use of templates provides ordered assemblies in defined patterns. In a typical soft-template, nanoparticles and other surface-active agents are incorporated into non-miscible liquids. The resulting self-organized dispersions will mediate nanoparticle interactions to control the subsequent self-assembly. Especially interactions between nanoparticles of very different dispersibility and functionality can be directed at a liquid-liquid interface. In this project, water-in-oil microemulsions were formulated from quasi-ternary mixtures with Aerosol-OT as surfactant. Oleyl-capped superparamagnetic iron oxide and/or silver nanoparticles were incorporated in the continuous organic phase, while polyethyleneimine-stabilized gold nanoparticles were confined in the dispersed water droplets. Each type of nanoparticle can modulate the surfactant film and the inter-droplet interactions in diverse ways, and their combination causes synergistic effects. Interfacial assemblies of nanoparticles resulted after phase-separation. On one hand, from a biphasic Winsor type II system at low surfactant concentration, drop-casting of the upper phase afforded thin films of ordered nanoparticles in filament-like networks. Detailed characterization proved that this templated assembly over a surface is based on the controlled clustering of nanoparticles and the elongation of the microemulsion droplets. This process offers versatility to use different nanoparticle compositions by keeping the surface functionalization, in different solvents and over different surfaces. On the other hand, a magnetic heterocoagulate was formed at higher surfactant concentration, whose phase-transfer from oleic acid to water was possible with another auxiliary surfactant in ethanol-water mixture. When the original components were initially mixed under heating, defined oil-in-water, magnetic-responsive nanostructures were obtained, consisting on water-dispersible nanoparticle domains embedded by a matrix-shell of oil-dispersible nanoparticles. Herein, two different approaches were demonstrated to form diverse hybrid nanostructures from reverse microemulsions as self-organized dispersions of the same components. This shows that microemulsions are versatile soft-templates not only for the synthesis of nanoparticles, but also for their self-assembly, which suggest new approaches towards the production of new sophisticated nanomaterials in larger scale.}, language = {en} } @phdthesis{Dai2018, author = {Dai, Xiaolin}, title = {Synthesis of artificial building blocks for sortase-mediated ligation and their enzymatic linkage}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-420060}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 125}, year = {2018}, abstract = {Das Enzym Sortase A katalysiert die Bildung einer Peptidbindung zwischen der Erkennungssequenz LPXTG und einem Oligoglycin. W{\"a}hrend vielf{\"a}ltige Ligationen zwischen Proteinen und verschiedenen Biomolek{\"u}len, Proteinen und kleinen synthetischen Molek{\"u}len, sowie Proteinen und Oberfl{\"a}chen durchgef{\"u}hrt wurden, besteht das Ziel dieser Arbeit darin, die Sortase-katalysierte Verlinkung von synthetischen Bausteinen zu untersuchen. Dies k{\"o}nnte den Weg bereiten f{\"u}r die Anwendung von Sortase A f{\"u}r chemische Aufgabenstellungen und eventuell sogar in den Materialwissenschaften. F{\"u}r diese grunds{\"a}tzliche Untersuchung wurden die verwendeten Bausteine zun{\"a}chst so einfach wie m{\"o}glich gehalten und leicht zug{\"a}ngliche SiO2 Nanopartikel und kommerziell erh{\"a}ltliche Polymerbl{\"o}cke ausgew{\"a}hlt. Die Bausteine wurden als erstes mit den Peptidsequenzen f{\"u}r Sortase-vermittelte Ligationen funktionalisiert. SiO2 Nanopartikel wurden mit Durchmessern von 60 und 200 nm hergestellt und mit C=C Doppelbindungen oberfl{\"a}chenmodifiziert. Dann wurden Peptide mit einem terminalen Cystein kovalent durch eine Thiol-en Reaktion angebunden. An die 60 nm NP wurden Peptide mit einem Pentaglycin und an die 200 nm Partikel Peptide mit LPETG Sequenz gebunden. Auf die gleiche Art und Weise wurden Peptide mit terminalem Cystein an die Polymere Polyethylenglykol (PEG) und Poly(N Isopropylacrylamid) (PNIPAM), die beide {\"u}ber C=C Endgruppen verf{\"u}gen, gebunden und G5-PEG und PNIPAM-LPETG Konjugate erhalten. Mit den vier Bausteinen wurden nun durch Sortase-vermittelte Ligation NP-Polymer Hybride, NP-NP und Polymer-Polymer Strukturen hergestellt und die Produkte u. a. durch Transmissionselektronen-mikroskopie, MALDI-ToF Massenspektrometrie sowie Dynamische Lichtstreuung charakterisiert. Die Verlinkung dieser synthetischen Bausteine konnte eindeutig gezeigt werden. Das Verwenden von kommerziell erh{\"a}ltlichen Polymeren hat jedoch zu einem Gemisch der Polymer-Peptid Konjugate mit unmodifiziertem Polymer gef{\"u}hrt, welches nicht gereinigt werden konnte. Deswegen wurden anschließend Synthesestrategien f{\"u}r reine Peptid-Polymer und Polymer-Peptid Konjugate als Bausteine f{\"u}r Sortase-vermittelte Ligationen entwickelt. Diese basieren auf der RAFT Polymerisation mit CTAs, die entweder an N- oder C-Terminus eines Peptids gebunden sind. GG-PNIPAM wurde durch das Anbinden eines geeigneten RAFT CTAs an Fmoc-GG in einer Veresterungsreaktion, Polymerisation von NIPAM und Abspalten der Fmoc Schutzgruppe synthetisiert. Weiterhin wurden mehrere Peptide durch Festphasen-Peptidsynthese erhalten. Die Anbindung eines RAFT CTAs (oder eines Polymerisationsinitiators) an den N-Terminus eines Peptids kann automatisiert als letzter Schritt in einem Peptid-Synthetisierer erfolgen. Die Synthese eines solchen Konjugats konnte in dem Zeithorizont dieser Arbeit noch nicht erreicht werden. Jedoch existieren mehrere vielversprechende Strategien, um diesen Ansatz mit verschiedenen Kopplungsreagenzien zur Anbindung des CTAs fortzusetzen. Solche Polymer Bausteine k{\"o}nnen in Zukunft f{\"u}r die Synthese von Protein-Polymer Konjugaten durch Sortase-Katalyse verwendet werden. Außerdem kann der Ansatz auch f{\"u}r die Synthese von Block-Copolymeren aus Polymerbl{\"o}cken mit Peptidmotiven an beiden Enden ausgebaut werden. Auch wenn bei der grunds{\"a}tzlichen Untersuchung im Rahmen dieser Arbeit Hybridstrukturen hergestellt wurden, die auch durch traditionelle chemische Synthesen erhalten werden k{\"o}nnten, wird ein Bausatz solcher Bausteine in Zukunft die Synthese neuer Materialien erm{\"o}glichen und kann auch den Weg f{\"u}r die Anwendung von Enzymen in den Materialwissenschaften ebnen. In Erg{\"a}nzung zu Nanopartikeln und Block-Copolymeren k{\"o}nnen dann auch Hybridmaterialien unter Einbezug von Protein-basierten Bausteinen hergestellt werden. Daher k{\"o}nnten Sortase Enzyme zu einem Werkzeug werden, welches etablierte chemische Verlinkungstechniken erg{\"a}nzt und mit den hoch spezifischen Peptidmotiven {\"u}ber funktionale Einheiten verf{\"u}gt, die orthogonal zu allen chemischen Gruppen sind.}, language = {en} } @phdthesis{MbayaMani2017, author = {Mbaya Mani, Christian}, title = {Functional nanoporous carbon-based materials derived from oxocarbon-metal coordination complexes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407866}, school = {Universit{\"a}t Potsdam}, pages = {IV, 135}, year = {2017}, abstract = {Nanoporous carbon based materials are of particular interest for both science and industry due to their exceptional properties such as a large surface area, high pore volume, high electroconductivity as well as high chemical and thermal stability. Benefiting from these advantageous properties, nanoporous carbons proved to be useful in various energy and environment related applications including energy storage and conversion, catalysis, gas sorption and separation technologies. The synthesis of nanoporous carbons classically involves thermal carbonization of the carbon precursors (e.g. phenolic resins, polyacrylonitrile, poly(vinyl alcohol) etc.) followed by an activation step and/or it makes use of classical hard or soft templates to obtain well-defined porous structures. However, these synthesis strategies are complicated and costly; and make use of hazardous chemicals, hindering their application for large-scale production. Furthermore, control over the carbon materials properties is challenging owing to the relatively unpredictable processes at the high carbonization temperatures. In the present thesis, nanoporous carbon based materials are prepared by the direct heat treatment of crystalline precursor materials with pre-defined properties. This synthesis strategy does not require any additional carbon sources or classical hard- or soft templates. The highly stable and porous crystalline precursors are based on coordination compounds of the squarate and croconate ions with various divalent metal ions including Zn2+, Cu2+, Ni2+, and Co2+, respectively. Here, the structural properties of the crystals can be controlled by the choice of appropriate synthesis conditions such as the crystal aging temperature, the ligand/metal molar ratio, the metal ion, and the organic ligand system. In this context, the coordination of the squarate ions to Zn2+ yields porous 3D cube crystalline particles. The morphology of the cubes can be tuned from densely packed cubes with a smooth surface to cubes with intriguing micrometer-sized openings and voids which evolve on the centers of the low index faces as the crystal aging temperature is raised. By varying the molar ratio, the particle shape can be changed from truncated cubes to perfect cubes with right-angled edges. These crystalline precursors can be easily transformed into the respective carbon based materials by heat treatment at elevated temperatures in a nitrogen atmosphere followed by a facile washing step. The resulting carbons are obtained in good yields and possess a hierarchical pore structure with well-organized and interconnected micro-, meso- and macropores. Moreover, high surface areas and large pore volumes of up to 1957 m2 g-1 and 2.31 cm3 g-1 are achieved, respectively, whereby the macroscopic structure of the precursors is preserved throughout the whole synthesis procedure. Owing to these advantageous properties, the resulting carbon based materials represent promising supercapacitor electrode materials for energy storage applications. This is exemplarily demonstrated by employing the 3D hierarchical porous carbon cubes derived from squarate-zinc coordination compounds as electrode material showing a specific capacitance of 133 F g-1 in H2SO4 at a scan rate of 5 mV s-1 and retaining 67\% of this specific capacitance when the scan rate is increased to 200 mV s-1. In a further application, the porous carbon cubes derived from squarate-zinc coordination compounds are used as high surface area support material and decorated with nickel nanoparticles via an incipient wetness impregnation. The resulting composite material combines a high surface area, a hierarchical pore structure with high functionality and well-accessible pores. Moreover, owing to their regular micro-cube shape, they allow for a good packing of a fixed-bed flow reactor along with high column efficiency and a minimized pressure drop throughout the packed reactor. Therefore, the composite is employed as heterogeneous catalyst in the selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran showing good catalytic performance and overcoming the conventional problem of column blocking. Thinking about the rational design of 3D carbon geometries, the functions and properties of the resulting carbon-based materials can be further expanded by the rational introduction of heteroatoms (e.g. N, B, S, P, etc.) into the carbon structures in order to alter properties such as wettability, surface polarity as well as the electrochemical landscape. In this context, the use of crystalline materials based on oxocarbon-metal ion complexes can open a platform of highly functional materials for all processes that involve surface processes.}, language = {en} } @phdthesis{Schuermann2017, author = {Sch{\"u}rmann, Robin Mathis}, title = {Interaction of the potential DNA-radiosensitizer 8-bromoadenine with free and plasmonically generated electrons}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407017}, school = {Universit{\"a}t Potsdam}, pages = {xi, 120}, year = {2017}, abstract = {In Germany more than 200.000 persons die of cancer every year, which makes it the second most common cause of death. Chemotherapy and radiation therapy are often combined to exploit a supra-additive effect, as some chemotherapeutic agents like halogenated nucleobases sensitize the cancerous tissue to radiation. The radiosensitizing action of certain therapeutic agents can be at least partly assigned to their interaction with secondary low energy electrons (LEEs) that are generated along the track of the ionizing radiation. In the therapy of cancer DNA is an important target, as severe DNA damage like double strand breaks induce the cell death. As there is only a limited number of radiosensitizing agents in clinical practice, which are often strongly cytotoxic, it would be beneficial to get a deeper understanding of the interaction of less toxic potential radiosensitizers with secondary reactive species like LEEs. Beyond that LEEs can be generated by laser illuminated nanoparticles that are applied in photothermal therapy (PTT) of cancer, which is an attempt to treat cancer by an increase of temperature in the cells. However, the application of halogenated nucleobases in PTT has not been taken into account so far. In this thesis the interaction of the potential radiosensitizer 8-bromoadenine (8BrA) with LEEs was studied. In a first step the dissociative electron attachment (DEA) in the gas phase was studied in a crossed electron-molecular beam setup. The main fragmentation pathway was revealed as the cleavage of the C-Br bond. The formation of a stable parent anion was observed for electron energies around 0 eV. Furthermore, DNA origami nanostructures were used as platformed to determine electron induced strand break cross sections of 8BrA sensitized oligonucleotides and the corresponding nonsensitized sequence as a function of the electron energy. In this way the influence of the DEA resonances observed for the free molecules on the DNA strand breaks was examined. As the surrounding medium influences the DEA, pulsed laser illuminated gold nanoparticles (AuNPs) were used as a nanoscale electron source in an aqueous environment. The dissociation of brominated and native nucleobases was tracked with UV-Vis absorption spectroscopy and the generated fragments were identified with surface enhanced Raman scattering (SERS). Beside the electron induced damage, nucleobase analogues are decomposed in the vicinity of the laser illuminatednanoparticles due to the high temperatures. In order to get a deeper understanding of the different dissociation mechanisms, the thermal decomposition of the nucleobases in these systems was studied and the influence of the adsorption kinetics of the molecules was elucidated. In addition to the pulsed laser experiments, a dissociative electron transfer from plasmonically generated "hot electrons" to 8BrA was observed under low energy continuous wave laser illumination and tracked with SERS. The reaction was studied on AgNPs and AuNPs as a function of the laser intensity and wavelength. On dried samples the dissociation of the molecule was described by fractal like kinetics. In solution, the dissociative electron transfer was observed as well. It turned out that the timescale of the reaction rates were slightly below typical integration times of Raman spectra. In consequence such reactions need to be taken into account in the interpretation of SERS spectra of electrophilic molecules. The findings in this thesis help to understand the interaction of brominated nucleobases with plasmonically generated electrons and free electrons. This might help to evaluate the potential radiosensitizing action of such molecules in cancer radiation therapy and PTT.}, language = {en} } @phdthesis{Olszewska2015, author = {Olszewska, Agata}, title = {Forming magnetic chain with the help of biological organisms}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89767}, school = {Universit{\"a}t Potsdam}, pages = {101}, year = {2015}, abstract = {Magnetite nanoparticles and their assembly comprise a new area of development for new technologies. The magnetic particles can interact and assemble in chains or networks. Magnetotactic bacteria are one of the most interesting microorganisms, in which the assembly of nanoparticles occurs. These microorganisms are a heterogeneous group of gram negative prokaryotes, which all show the production of special magnetic organelles called magnetosomes, consisting of a magnetic nanoparticle, either magnetite (Fe3O4) or greigite (Fe3S4), embedded in a membrane. The chain is assembled along an actin-like scaffold made of MamK protein, which makes the magnetosomes to arrange in mechanically stable chains. The chains work as a compass needle in order to allow cells to orient and swim along the magnetic field of the Earth. The formation of magnetosomes is known to be controlled at the molecular level. The physico-chemical conditions of the surrounding environment also influence biomineralization. The work presented in this manuscript aims to understand how such external conditions, in particular the extracellular oxidation reduction potential (ORP) influence magnetite formation in the strain Magnetospirillum magneticum AMB-1. A controlled cultivation of the microorganism was developed in a bioreactor and the formation of magnetosomes was characterized. Different techniques have been applied in order to characterize the amount of iron taken up by the bacteria and in consequence the size of magnetosomes produced at different ORP conditions. By comparison of iron uptake, morphology of bacteria, size and amount of magnetosomes per cell at different ORP, the formation of magnetosomes was inhibited at ORP 0 mV, whereas reduced conditions, ORP - 500 mV facilitate biomineralization process. Self-assembly of magnetosomes occurring in magnetotactic bacteria became an inspiration to learn from nature and to construct nanoparticles assemblies by using the bacteriophage M13 as a template. The M13 bacteriophage is an 800 nm long filament with encapsulated single-stranded DNA that has been recently used as a scaffold for nanoparticle assembly. I constructed two types of assemblies based on bacteriophages and magnetic nanoparticles. A chain - like assembly was first formed where magnetite nanoparticles are attached along the phage filament. A sperm - like construct was also built with a magnetic head and a tail formed by phage filament. The controlled assembly of magnetite nanoparticles on the phage template was possible due to two different mechanism of nanoparticle assembly. The first one was based on the electrostatic interactions between positively charged polyethylenimine coated magnetite nanoparticles and negatively charged phages. The second phage -nanoparticle assembly was achieved by bioengineered recognition sites. A mCherry protein is displayed on the phage and is was used as a linker to a red binding nanobody (RBP) that is fused to the one of the proteins surrounding the magnetite crystal of a magnetosome. Both assemblies were actuated in water by an external magnetic field showing their swimming behavior and potentially enabling further usage of such structures for medical applications. The speed of the phage - nanoparticles assemblies are relatively slow when compared to those of microswimmers previously published. However, only the largest phage-magnetite assemblies could be imaged and it is therefore still unclear how fast these structures can be in their smaller version.}, language = {en} } @phdthesis{Bomm2012, author = {Bomm, Jana}, title = {Von Gold Plasmonen und Exzitonen : Synthese, Charakterisierung und Applikationen von Gold Nanopartikeln}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66402}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {In dieser Arbeit wurden sph{\"a}rische Gold Nanopartikel (NP) mit einem Durchmesser gr{\"o}ßer ~ 2 nm, Gold Quantenpunkte (QDs) mit einem Durchmesser kleiner ~ 2 nm sowie Gold Nanost{\"a}bchen (NRs) unterschiedlicher L{\"a}nge hergestellt und optisch charakterisiert. Zudem wurden zwei neue Synthesevarianten f{\"u}r die Herstellung thermosensitiver Gold QDs entwickelt werden. Sph{\"a}rische Gold NP zeigen eine Plasmonenbande bei ~ 520 nm, die auf die kollektive Oszillation von Elektronen zur{\"u}ckzuf{\"u}hren ist. Gold NRs weisen aufgrund ihrer anisotropen Form zwei Plasmonenbanden auf, eine transversale Plasmonenbande bei ~ 520 nm und eine longitudinale Plasmonenbande, die vom L{\"a}nge-zu-Durchmesser-Verh{\"a}ltnis der Gold NRs abh{\"a}ngig ist. Gold QDs besitzen keine Plasmonenbande, da ihre Elektronen Quantenbeschr{\"a}nkungen unterliegen. Gold QDs zeigen jedoch aufgrund diskreter Energieniveaus und einer Bandl{\"u}cke Photolumineszenz (PL). Die synthetisierten Gold QDs besitzen eine Breitbandlumineszenz im Bereich von ~ 500-800 nm, wobei die Lumineszenz-eigenschaften (Emissionspeak, Quantenausbeute, Lebenszeiten) stark von den Herstellungs-bedingungen und den Oberfl{\"a}chenliganden abh{\"a}ngen. Die PL in Gold QDs ist ein sehr komplexes Ph{\"a}nomen und r{\"u}hrt vermutlich von Singulett- und Triplett-Zust{\"a}nden her. Gold NRs und Gold QDs konnten in verschiedene Polymere wie bspw. Cellulosetriacetat eingearbeitet werden. Polymernanokomposite mit Gold NRs wurden erstmals unter definierten Bedingungen mechanisch gezogen, um Filme mit optisch anisotropen (richtungsabh{\"a}ngigen) Eigenschaften zu erhalten. Zudem wurde das Temperaturverhalten von Gold NRs und Gold QDs untersucht. Es konnte gezeigt werden, dass eine lokale Variation der Gr{\"o}ße und Form von Gold NRs in Polymernanokompositen durch Temperaturerh{\"o}hung auf 225-250 °C erzielt werden kann. Es zeigte sich, dass die PL der Gold QDs stark temperaturabh{\"a}ngig ist, wodurch die PL QY der Proben beim Abk{\"u}hlen (-7 °C) auf knapp 30 \% verdoppelt und beim Erhitzen auf 70 °C nahezu vollst{\"a}ndig gel{\"o}scht werden konnte. Es konnte demonstriert werden, dass die L{\"a}nge der Alkylkette des Oberfl{\"a}chenliganden einen Einfluss auf die Temperaturstabilit{\"a}t der Gold QDs hat. Zudem wurden verschiedene neuartige und optisch anisotrope Sicherheitslabels mit Gold NRs sowie thermosensitive Sicherheitslabel mit Gold QDs entwickelt. Ebenso scheinen Gold NRs und QDs f{\"u}r die und die Optoelektronik (bspw. Datenspeicherung) und die Medizin (bspw. Krebsdiagnostik bzw. -therapie) von großem Interesse zu sein.}, language = {de} } @phdthesis{Kiel2012, author = {Kiel, Mareike}, title = {Static and ultrafast optical properties of nanolayered composites : gold nanoparticles embedded in polyelectrolytes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-61823}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {In the course of this thesis gold nanoparticle/polyelectrolyte multilayer structures were prepared, characterized, and investigated according to their static and ultrafast optical properties. Using the dip-coating or spin-coating layer-by-layer deposition method, gold-nanoparticle layers were embedded in a polyelectrolyte environment with high structural perfection. Typical structures exhibit four repetition units, each consisting of one gold-particle layer and ten double layers of polyelectrolyte (cationic+anionic polyelectrolyte). The structures were characterized by X-ray reflectivity measurements, which reveal Bragg peaks up to the seventh order, evidencing the high stratication of the particle layers. In the same measurements pronounced Kiessig fringes were observed, which indicate a low global roughness of the samples. Atomic force microscopy (AFM) images veried this low roughness, which results from the high smoothing capabilities of polyelectrolyte layers. This smoothing effect facilitates the fabrication of stratified nanoparticle/polyelectrolyte multilayer structures, which were nicely illustrated in a transmission electron microscopy image. The samples' optical properties were investigated by static spectroscopic measurements in the visible and UV range. The measurements revealed a frequency shift of the reflectance and of the plasmon absorption band, depending on the thickness of the polyelectrolyte layers that cover a nanoparticle layer. When the covering layer becomes thicker than the particle interaction range, the absorption spectrum becomes independent of the polymer thickness. However, the reflectance spectrum continues shifting to lower frequencies (even for large thicknesses). The range of plasmon interaction was determined to be in the order of the particle diameter for 10 nm, 20 nm, and 150 nm particles. The transient broadband complex dielectric function of a multilayer structure was determined experimentally by ultrafast pump-probe spectroscopy. This was achieved by simultaneous measurements of the changes in the reflectance and transmittance of the excited sample over a broad spectral range. The changes in the real and imaginary parts of the dielectric function were directly deduced from the measured data by using a recursive formalism based on the Fresnel equations. This method can be applied to a broad range of nanoparticle systems where experimental data on the transient dielectric response are rare. This complete experimental approach serves as a test ground for modeling the dielectric function of a nanoparticle compound structure upon laser excitation.}, language = {en} } @phdthesis{Haase2011, author = {Haase, Martin F.}, title = {Modification of nanoparticle surfaces for emulsion stabilization and encapsulation of active molecules for anti-corrosive coatings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-55413}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Within this work, three physicochemical methods for the hydrophobization of initially hydrophilic solid particles are investigated. The modified particles are then used for the stabilization of oil-in-water (o/w) emulsions. For all introduced methods electrostatic interactions between strongly or weakly charged groups in the system are es-sential. (i) Short chain alkylammonium bromides (C4 - C12) adsorb on oppositely charged solid particles. Macroscopic contact angle measurements of water droplets under air and hexane on flat silica surfaces in dependency of the surface charge density and alkylchain-length allow the calculation of the surface energy and give insights into the emulsification properties of solid particles modified with alkyltrimethylammonium bromides. The measure-ments show an increase of the contact angle with increasing surface charge density, due to the enhanced adsorp-tion of the oppositely charged alkylammonium bromides. Contact angles are higher for longer alkylchain lengths. The surface energy calculations show that in particular the surface-hexane or surface-air interfacial en-ergy is being lowered upon alkylammonium adsorption, while a significant increase of the surface-water interfa-cial energy occurs only at long alkyl chain lengths and high surface charge densities. (ii) The thickness and the charge density of an adsorbed weak polyelectrolyte layer (e.g. PMAA, PAH) influence the wettability of nanoparticles (e.g. alumina, silica, see Scheme 1(b)). Furthermore, the isoelectric point and the pH range of colloidal stability of particle-polyelectrolyte composites depend on the thickness of the weak polye-lectrolyte layer. Silica nanoparticles with adsorbed PAH and alumina nanoparticles with adsorbed PMAA be-come interfacially active and thus able to stabilize o/w emulsions when the degree of dissociation of the polye-lectrolyte layer is below 80 \%. The average droplet size after emulsification of dodecane in water depends on the thickness and the degree of dissociation of the adsorbed PE-layer. The visualization of the particle-stabilized o/w emulsions by cryogenic SEM shows that for colloidally stable alumina-PMAA composites the oil-water interface is covered with a closely packed monolayer of particles, while for the colloidally unstable case closely packed aggregated particles deposit on the interface. (iii) By emulsifying a mixture of the corrosion inhibitor 8-hydroxyquinoline (8-HQ) and styrene with silica nanoparticles a highly stable o/w emulsion can be obtained in a narrow pH window. The amphoteric character of 8-HQ enables a pH dependent electrostatic interaction with silica nanoparticles, which can render them interfa-cially active. Depending on the concentration and the degree of dissociation of 8-HQ the adsorption onto silica results from electrostatic or aromatic interactions between 8-HQ and the particle-surface. At intermediate amounts of adsorbed 8-HQ the oil wettability of the particles becomes sufficient for stabilizing o/w emulsions. Cryogenic SEM visualization shows that the particles arrange then in a closely packed shell consisting of partly of aggregated domains on the droplet interface. For further increasing amounts of adsorbed 8-HQ the oil wet-tability is reduced again and the particles ability to stabilize emulsions decreases. By the addition of hexadecane to the oil phase the size of the droplets can be reduced down to 200 nm by in-creasing the silica mass fraction. Subsequent polymerization produces corrosion inhibitor filled (20 wt-\%) poly-styrene-silica composite particles. The measurement of the release of 8-hydroxyquinoline shows a rapid increase of 8-hydroxyquinoline in a stirred aqueous solution indicating the release of the total content in less than 5 min-utes. The method is extended for the encapsulation of other organic corrosion inhibitors. The silica-polymer-inhibitor composite particles are then dispersed in a water based alkyd emulsion, and the dispersion is used to coat flat aluminium substrates. After drying and cross-linking the polmer-film Confocal Laser Scanning Micros-copy is employed revealing a homogeneous distribution of the particles in the film. Electrochemical Impedance Spectroscopy in aqueous electrolyte solutions shows that films with aggregated particle domains degrade with time and don't provide long-term corrosion protection of the substrate. However, films with highly dispersed particles have high barrier properties for corrosive species. The comparison of films containing silica-polystyrene composite particles with and without 8-hydroxyquinoline shows higher electrochemical impedances when the inhibitor is present in the film. By applying the Scanning Vibrating Electrode Technique the localized corrosion rate in the fractured area of scratched polymer films containing the silica-polymer-inhibitor composite particles is studied. Electrochemical corrosion cannot be suppressed but the rate is lowered when inhibitor filled composite particles are present in the film. By depositing six polyelectrolyte layers on particle stabilized emulsion droplets their surface morphology changes significantly as shown by SEM visualization. When the oil wettability of the outer polyelectrolyte layer increases, the polyelectrolyte coated droplets can act as emulsion stabilizers themselves by attaching onto bigger oil droplets in a closely packed arrangement. In the presence of 3 mM LaCl3 8-HQ hydrophobized silica particles aggregate strongly on the oil-water inter-face. The application of an ultrasonic field can remove two dimensional shell-compartments from the droplet surface, which are then found in the aqueous bulk phase. Their size ranges up to 1/4th of the spherical particle shell.}, language = {en} } @phdthesis{Popovic2011, author = {Popovic, Jelena}, title = {Novel lithium iron phosphate materials for lithium-ion batteries}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54591}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Conventional energy sources are diminishing and non-renewable, take million years to form and cause environmental degradation. In the 21st century, we have to aim at achieving sustainable, environmentally friendly and cheap energy supply by employing renewable energy technologies associated with portable energy storage devices. Lithium-ion batteries can repeatedly generate clean energy from stored materials and convert reversely electric into chemical energy. The performance of lithium-ion batteries depends intimately on the properties of their materials. Presently used battery electrodes are expensive to be produced; they offer limited energy storage possibility and are unsafe to be used in larger dimensions restraining the diversity of application, especially in hybrid electric vehicles (HEVs) and electric vehicles (EVs). This thesis presents a major progress in the development of LiFePO4 as a cathode material for lithium-ion batteries. Using simple procedure, a completely novel morphology has been synthesized (mesocrystals of LiFePO4) and excellent electrochemical behavior was recorded (nanostructured LiFePO4). The newly developed reactions for synthesis of LiFePO4 are single-step processes and are taking place in an autoclave at significantly lower temperature (200 deg. C) compared to the conventional solid-state method (multi-step and up to 800 deg. C). The use of inexpensive environmentally benign precursors offers a green manufacturing approach for a large scale production. These newly developed experimental procedures can also be extended to other phospho-olivine materials, such as LiCoPO4 and LiMnPO4. The material with the best electrochemical behavior (nanostructured LiFePO4 with carbon coating) was able to delive a stable 94\% of the theoretically known capacity.}, language = {en} } @phdthesis{Kraupner2011, author = {Kraupner, Alexander}, title = {Neuartige Synthese magnetischer Nanostrukturen: Metallcarbide und Metallnitride der {\"U}bergangsmetalle Fe/Co/Ni}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52314}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Magnetische Nanopartikel bieten ein großes Potential, da sie einerseits die Eigenschaften ihrer Bulk-Materialien besitzen und anderseits, auf Grund ihrer Gr{\"o}ße, {\"u}ber komplett unterschiedliche magnetische Eigenschaften verf{\"u}gen k{\"o}nnen; Superparamagnetismus ist eine dieser Eigenschaften. Die meisten etablierten Anwendungen magnetischer Nanopartikel basieren heutzutage auf Eisenoxiden. Diese bieten gute magnetische Eigenschaften, sind chemisch relativ stabil, ungiftig und lassen sich auf vielen Synthesewegen relativ einfach herstellen. Die magnetischen Eigenschaften der Eisenoxide sind materialabh{\"a}ngig aber begrenzt, weshalb nach anderen Verbindungen mit besseren Eigenschaften gesucht werden muss. Eisencarbid (Fe3C) kann eine dieser Verbindungen sein. Dieses besitzt vergleichbare positive Eigenschaften wie Eisenoxid, jedoch viel bessere magnetische Eigenschaften, speziell eine h{\"o}here S{\"a}ttigungsmagnetisierung. Bis jetzt wurde Fe3C haupts{\"a}chlich in Gasphasenabscheidungsprozessen synthetisiert oder als Nebenprodukt bei der Synthese von Kohlenstoffstrukturen gefunden. Eine Methode, mit der gezielt Fe3C-Nanopartikel und andere Metallcarbide synthetisiert werden k{\"o}nnen, ist die „Harnstoff-Glas-Route". Neben den Metallcarbiden k{\"o}nnen mit dieser Methode auch die entsprechenden Metallnitride synthetisiert werden, was die breite Anwendbarkeit der Methode unterstreicht. Die „Harnstoff-Glas-Route" ist eine Kombination eines Sol-Gel-Prozesses mit einer anschließenden carbothermalen Reduktion/Nitridierung bei h{\"o}heren Temperaturen. Sie bietet den Vorteil einer einfachen und schnellen Synthese verschiedener Metallcarbide/nitride. Der Schwerpunkt in dieser Arbeit lag auf der Synthese von Eisencarbiden/nitriden, aber auch Nickel und Kobalt wurden betrachtet. Durch die Variation der Syntheseparameter konnten verschiedene Eisencarbid/nitrid Nanostrukturen synthetisiert werden. Fe3C-Nanopartikel im Gr{\"o}ßenbereich von d = 5 - 10 nm konnten, durch die Verwendung von Eisenchlorid, hergestellt werden. Die Nanopartikel weisen durch ihre geringe Gr{\"o}ße superparamagnetische Eigenschaften auf und besitzen, im Vergleich zu Eisenoxid Nanopartikeln im gleichen Gr{\"o}ßenbereich, eine h{\"o}here S{\"a}ttigungsmagnetisierung. Diese konnten in fortf{\"u}hrenden Experimenten erfolgreich in ionischen Fl{\"u}ssigkeiten und durch ein Polymer-Coating, im w{\"a}ssrigen Medium, dispergiert werden. Desweiteren wurde durch ein Templatieren mit kolloidalem Silika eine mesopor{\"o}se Fe3C-Nanostruktur hergestellt. Diese konnte erfolgreich in der katalytischen Spaltung von Ammoniak getestet werden. Mit der Verwendung von Eisenacetylacetonat konnten neben Fe3C-Nanopartikeln, nur durch Variation der Reaktionsparameter, auch Fe7C3- und Fe3N-Nanopartikel synthetisiert werden. Speziell f{\"u}r die Fe3C-Nanopartikel konnte die S{\"a}ttigungsmagnetisierung, im Vergleich zu den mit Eisenchlorid synthetisierten Nanopartikeln, nochmals erh{\"o}ht werden. Versuche mit Nickelacetat f{\"u}hrten zu Nickelnitrid (Ni3N) Nanokristallen. Eine zus{\"a}tzliche metallische Nickelphase f{\"u}hrte zu einer Selbstorganisation der Partikel in Scheiben-{\"a}hnliche {\"U}berstrukturen. Mittels Kobaltacetat konnten, in Sph{\"a}ren aggregierte, metallische Kobalt Nanopartikel synthetisiert werden. Kobaltcarbid/nitrid war mit den gegebenen Syntheseparametern nicht zug{\"a}nglich.}, language = {de} } @phdthesis{Stoeckle2010, author = {St{\"o}ckle, Silke}, title = {Thin liquid films with nanoparticles and rod-like ions as models for nanofluidics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-46370}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {With the rise of nanotechnology in the last decade, nanofluidics has been established as a research field and gained increased interest in science and industry. Natural aqueous nanofluidic systems are very complex, there is often a predominance of liquid interfaces or the fluid contains charged or differently shaped colloids. The effects, promoted by these additives, are far from being completely understood and interesting questions arise with regards to the confinement of such complex fluidic systems. A systematic study of nanofluidic processes requires designing suitable experimental model nano - channels with required characteristics. The present work employed thin liquid films (TLFs) as experimental models. They have proven to be useful experimental tools because of their simple geometry, reproducible preparation, and controllable liquid interfaces. The thickness of the channels can be adjusted easily by the concentration of electrolyte in the film forming solution. This way, channel dimensions from 5 - 100 nm are possible, a high flexibility for an experimental system. TLFs have liquid IFs of different charge and properties and they offer the possibility to confine differently shaped ions and molecules to very small spaces, or to subject them to controlled forces. This makes the foam films a unique "device" available to obtain information about fluidic systems in nanometer dimensions. The main goal of this thesis was to study nanofluidic processes using TLFs as models, or tools, and to subtract information about natural systems plus deepen the understanding on physical chemical conditions. The presented work showed that foam films can be used as experimental models to understand the behavior of liquids in nano - sized confinement. In the first part of the thesis, we studied the process of thinning of thin liquid films stabilized with the non - ionic surfactant n - dodecyl - β - maltoside (β - C₁₂G₂) with primary interest in interfacial diffusion processes during the thinning process dependent on surfactant concentration 64. The surfactant concentration in the film forming solutions was varied at constant electrolyte (NaCl) concentration. The velocity of thinning was analyzed combining previously developed theoretical approaches. Qualitative information about the mobility of the surfactant molecules at the film surfaces was obtained. We found that above a certain limiting surfactant concentration the film surfaces were completely immobile and they behaved as non - deformable, which decelerated the thinning process. This follows the predictions for Reynolds flow of liquid between two non - deformable disks. In the second part of the thesis, we designed a TLF nanofluidic system containing rod - like multivalent ions and compared this system to films containing monovalent ions. We presented first results which recognized for the first time the existence of an additional attractive force in the foam films based on the electrostatic interaction between rod - like ions and oppositely charged surfaces. We may speculate that this is an ion bridging component of the disjoining pressure. The results show that for films prepared in presence of spermidine the transformation of the thicker CF to the thinnest NBF is more probable as films prepared with NaCl at similar conditions of electrostatic interaction. This effect is not a result of specific adsorption of any of the ions at the fluid surfaces and it does not lead to any changes in the equilibrium properties of the CF and NBF. Our hypothesis was proven using the trivalent ion Y3+ which does not show ion bridging. The experimental results are compared to theoretical predictions and a quantitative agreement on the system's energy gain for the change from CF to NBF could be obtained. In the third part of the work, the behavior of nanoparticles in confinement was investigated with respect to their impact on the fluid flow velocity. The particles altered the flow velocity by an unexpected high amount, so that the resulting changes in the dynamic viscosity could not be explained by a realistic change of the fluid viscosity. Only aggregation, flocculation and plug formation can explain the experimental results. The particle systems in the presented thesis had a great impact on the film interfaces due to the stabilizer molecules present in the bulk solution. Finally, the location of the particles with respect to their lateral and vertical arrangement in the film was studied with advanced reflectivity and scattering methods. Neutron Reflectometry studies were performed to investigate the location of nanoparticles in the TLF perpendicular to the IF. For the first time, we study TLFs using grazing incidence small angle X - ray scattering (GISAXS), which is a technique sensitive to the lateral arrangement of particles in confined volumes. This work provides preliminary data on a lateral ordering of particles in the film.}, language = {en} } @phdthesis{Karabudak2009, author = {Karabudak, Engin}, title = {Development of MWL-AUC / CCD-C-AUC / SLS-AUC detectors for the analytical ultracentrifuge}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-39921}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Analytical ultracentrifugation (AUC) has made an important contribution to polymer and particle characterization since its invention by Svedberg (Svedberg and Nichols 1923; Svedberg and Pederson 1940) in 1923. In 1926, Svedberg won the Nobel price for his scientific work on disperse systems including work with AUC. The first important discovery performed with AUC was to show the existence of macromolecules. Since that time AUC has become an important tool to study polymers in biophysics and biochemistry. AUC is an absolute technique that does not need any standard. Molar masses between 200 and 1014 g/mol and particle size between 1 and 5000 nm can be detected by AUC. Sample can be fractionated into its components due to its molar mass, particle size, structure or density without any stationary phase requirement as it is the case in chromatographic techniques. This very property of AUC earns it an important status in the analysis of polymers and particles. The distribution of molar mass, particle sizes and densities can be measured with the fractionation. Different types of experiments can give complementary physicochemical parameters. For example, sedimentation equilibrium experiments can lead to the study of pure thermodynamics. For complex mixtures, AUC is the main method that can analyze the system. Interactions between molecules can be studied at different concentrations without destroying the chemical equilibrium (Kim et al. 1977). Biologically relevant weak interactions can also be monitored (K ≈ 10-100 M-1). An analytical ultracentrifuge experiment can yield the following information: • Molecular weight of the sample • Number of the components in the sample if the sample is not a single component • Homogeneity of the sample • Molecular weight distribution if the sample is not a single component • Size and shape of macromolecules \& particles • Aggregation \& interaction of macromolecules • Conformational changes of macromolecules • Sedimentation coefficient and density distribution Such an extremely wide application area of AUC allows the investigation of all samples consisting of a solvent and a dispersed or dissolved substance including gels, micro gels, dispersions, emulsions and solutions. Another fact is that solvent or pH limitation does not exist for this method. A lot of new application areas are still flourishing, although the technique is 80 years old. In 1970s, 1500 AUC were operational throughout the world. At those times, due to the limitation in detection technologies, experimental results were obtained with photographic records. As time passed, faster techniques such as size exclusion chromatography (SEC), light scattering (LS) or SDS-gel electrophoresis occupied the same research fields with AUC. Due to these relatively new techniques, AUC began to loose its importance. In the 1980s, only a few AUC were in use throughout the world. In the beginning of the 1990s a modern AUC -the Optima XL-A - was released by Beckman Instruments (Giebeler 1992). The Optima XL-A was equipped with a modern computerized scanning absorption detector. The addition of Rayleigh Interference Optics is introduced which is called XL-I AUC. Furthermore, major development in computers made the analysis easier with the help of new analysis software. Today, about 400 XL-I AUC exist worldwide. It is usually applied in the industry of pharmacy, biopharmacy and polymer companies as well as in academic research fields such as biochemistry, biophysics, molecular biology and material science. About 350 core scientific publications which use analytical ultracentrifugation are published every year (source: SciFinder 2008 ) with an increasing number of references (436 reference in 2008). A tremendous progress has been made in method and analysis software after digitalization of experimental data with the release of XL-I. In comparison to the previous decade, data analysis became more efficient and reliable. Today, AUC labs can routinely use sophisticated data analysis methods for determination of sedimentation coefficient distributions (Demeler and van Holde 2004; Schuck 2000; Stafford 1992), molar mass distributions (Brookes and Demeler 2008; Brookes et al. 2006; Brown and Schuck 2006), interaction constants (Cao and Demeler 2008; Schuck 1998; Stafford and Sherwood 2004), particle size distributions with Angstrom resolution (C{\"o}lfen and Pauck 1997) and the simulations determination of size and shape distributions from sedimentation velocity experiments (Brookes and Demeler 2005; Brookes et al. 2006). These methods are also available in powerful software packages that combines various methods, such as, Ultrascan (Demeler 2005), Sedift/Sedphat (Schuck 1998; Vistica et al. 2004) and Sedanal (Stafford and Sherwood 2004). All these powerful packages are free of charge. Furthermore, Ultrascans source code is licensed under the GNU Public License (http://www.gnu.org/copyleft/gpl.html). Thus, Ultrascan can be further improved by any research group. Workshops are organized to support these software packages. Despite of the tremendous developments in data analysis, hardware for the system has not developed much. Although there are various user developed detectors in research laboratories, they are not commercially available. Since 1992, only one new optical system called "the fluorescence optics" (Schmidt and Reisner, 1992, MacGregor et al. 2004, MacGregor, 2006, Laue and Kroe, in press) has been commercialized. However, except that, there has been no commercially available improvement in the optical system. The interesting fact about the current hardware of the XL-I is that it is 20 years old, although there has been an enormous development in microelectronics, software and in optical systems in the last 20 years, which could be utilized for improved detectors. As examples of user developed detector, Bhattacharyya (Bhattacharyya 2006) described a Multiwavelength-Analytical Ultracentrifuge (MWL-AUC), a Raman detector and a small angle laser light scattering detector in his PhD thesis. MWL-AUC became operational, but a very high noise level prevented to work with real samples. Tests with the Raman detector were not successful due to the low light intensity and thus high integration time is required. The small angle laser light scattering detector could only detect latex particles but failed to detect smaller particles and molecules due to low sensitivity of the detector (a photodiode was used as detector). The primary motivation of this work is to construct a detector which can measure new physico-chemical properties with AUC with a nicely fractionated sample in the cell. The final goal is to obtain a multiwavelength detector for the AUC that measures complementary quantities. Instrument development is an option for a scientist only when there is a huge potential benefit but there is no available commercial enterprise developing appropriate equipment, or if there is not enough financial support to buy it. The first case was our motivation for developing detectors for AUC. Our aim is to use today's technological advances in microelectronics, programming, mechanics in order to develop new detectors for AUC and improve the existing MWL detector to routine operation mode. The project has multiple aspects which can be listed as mechanical, electronical, optical, software, hardware, chemical, industrial and biological. Hence, by its nature it is a multidisciplinary project. Again by its nature it contains the structural problem of its kind; the problem of determining the exact discipline to follow at each new step. It comprises the risk of becoming lost in some direction. Having that fact in mind, we have chosen the simplest possible solution to any optical, mechanical, electronic, software or hardware problem we have encountered and we have always tried to see the overall picture. In this research, we have designed CCD-C-AUC (CCD Camera UV/Vis absorption detector for AUC) and SLS-AUC (Static Light Scattering detector for AUC) and tested them. One of the SLS-AUC designs produced successful test results, but the design could not be brought to the operational stage. However, the operational state Multiwavelength Analytical Ultracentrifuge (MWL-AUC) AUC has been developed which is an important detector in the fields of chemistry, biology and industry. In this thesis, the operational state Multiwavelength Analytical Ultracentrifuge (MWL-AUC) AUC is to be introduced. Consequently, three different applications of MWL-AUC to the aforementioned disciplines shall be presented. First of all, application of MWL-AUC to a biological system which is a mixture of proteins lgG, aldolase and BSA is presented. An application of MWL-AUC to a mass-produced industrial sample (β-carotene gelatin composite particles) which is manufactured by BASF AG, is presented. Finally, it is shown how MWL-AUC will impact on nano-particle science by investigating the quantum size effect of CdTe and its growth mechanism. In this thesis, mainly the relation between new technological developments and detector development for AUC is investigated. Pioneering results are obtained that indicate the possible direction to be followed for the future of AUC. As an example, each MWL-AUC data contains thousands of wavelengths. MWL-AUC data also contains spectral information at each radial point. Data can be separated to its single wavelength files and can be analyzed classically with existing software packages. All the existing software packages including Ultrascan, Sedfit, Sedanal can analyze only single wavelength data, so new extraordinary software developments are needed. As a first attempt, Emre Brookes and Borries Demeler have developed mutliwavelength module in order to analyze the MWL-AUC data. This module analyzes each wavelength separately and independently. We appreciate Emre Brookes and Borries Demeler for their important contribution to the development of the software. Unfortunately, this module requires huge amount of computer power and does not take into account the spectral information during the analysis. New software algorithms are needed which take into account the spectral information and analyze all wavelengths accordingly. We would like also invite the programmers of Ultrascan, Sedfit, Sedanal and the other programs, to develop new algorithms in this direction.}, language = {en} } @phdthesis{Buha2008, author = {Buha, Jelena}, title = {Nonaqueous syntheses of metal oxide and metal nitride nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18368}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Nanostructured materials are materials consisting of nanoparticulate building blocks on the scale of nanometers (i.e. 10-9 m). Composition, crystallinity and morphology can enhance or even induce new properties of the materials, which are desirable for todays and future technological applications. In this work, we have shown new strategies to synthesise metal oxide and metal nitride nanomaterials. The first part of the work deals with the study of nonaqueous synthesis of metal oxide nanoparticles. We succeeded in the synthesis of In2O3 nanopartcles where we could clearly influence the morphology by varying the type of the precursors and the solvents; of ZnO mesocrystals by using acetonitrile as a solvent; of transition metal oxides (Nb2O5, Ta2O5 and HfO2) that are particularly hard to obtain on the nanoscale and other technologically important materials. Solvothermal synthesis however is not restricted to formation of oxide materials only. In the second part we show examples of nonaqueous, solvothermal reactions of metal nitrides, but the main focus lies on the investigation of the influence of different morphologies of metal oxide precursors on the formation of the metal nitride nanoparticles. In spite of various reports, the number and variety of nanocrystalline metal nitrides is marginally small by comparison to metal oxides; hence preformed metal oxides as precursors for the preparation of metal nitrides are a logical choice. By reacting oxide nanoparticles with cyanamide, urea or melamine, at temperatures of 800 to 900 °C under nitrogen flow metal nitrides could be obtained. We studied in detail the influence of the starting material and realized that size, crystallinity, type of nitrogen source and temperature play the most important role. We have managed to propose and verify a dissolution-recrystallisation model as the formation mechanism. Furthermore we could show that the initial morphology of the oxides could be retained when ammonia flow was used instead.}, language = {en} } @phdthesis{Ba2006, author = {Ba, Jianhua}, title = {Nonaqueous synthesis of metal oxide nanoparticles and their assembly into mesoporous materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-10173}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {This thesis mainly consist of two parts, the synthesis of several kinds of technologically interesting crystalline metal oxide nanoparticles via nonaqueous sol-gel process and the formation of mesoporous metal oxides using some of these nanoparticles as building blocks via evaporation induced self-assembly (EISA) technique. In the first part, the experimental procedures and characterization results of successful syntheses of crystalline tin oxide and tin doped indium oxide (ITO) nanoparticles are reported. SnO2 nanoparticles exhibit monodisperse particle size (3.5 nm in average), high crystallinity and particularly high dispersibility in THF, which enable them to become the ideal particulate precursor for the formation of mesoporous SnO2. ITO nanoparticles possess uniform particle morphology, narrow particle size distribution (5-10 nm), high crystallinity as well as high electrical conductivity. The synthesis approaches and characterization of various mesoporous metal oxides, including TiO2, SnO2, mixture of CeO2 and TiO2, mixture of BaTiO3 and SnO2, are reported in the second part of this thesis. Mesoporous TiO2 and SnO2 are presented as highlights of this part. Mesoporous TiO2 was produced in the forms of both films and bulk material. In the case of mesoporous SnO2, the study was focused on the high order of the porous structure. All these mesoporous metal oxides show high crystallinity, high surface area and rather monodisperse pore sizes, which demonstrate the validity of EISA process and the usage of preformed crystalline nanoparticles as nanobuilding blocks (NBBs) to produce mesoporous metal oxides.}, subject = {Nanopartikel}, language = {en} } @phdthesis{Rusu2004, author = {Rusu, Viorel Marin}, title = {Composite materials made of chitosan and nanosized apatite : preparation and physicochemical characterization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-2316}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Taking inspiration from nature, where composite materials made of a polymer matrix and inorganic fillers are often found, e.g. bone, shell of crustaceans, shell of eggs, etc., the feasibility on making composite materials containing chitosan and nanosized hydroxyapatite were investigated. A new preparation approach based on a co-precipitation method has been developed. In its earlier stage of formation, the composite occurs as hydrogel as suspended in aqueous alkaline solution. In order to get solid composites various drying procedures including freeze-drying technique, air-drying at room temperature and at moderate temperatures, between 50oC and 100oC were used. Physicochemical studies showed that the composites exhibit different properties with respect to their structure and composition. IR and Raman spectroscopy probed the presence of both chitosan and hydroxyapatite in the composites. Hydroxyapatite as dispersed in the chitosan matrix was found to be in the nanosize range (15-50 nm) and occurs in a bimodal distribution with respect to its crystallite length. Two types of distribution domains of hydroxyapatite crystallites in the composite matrix such as cluster-like (200-400 nm) and scattered-like domains were identified by the transmission electron microscopy (TEM), X-ray diffraction (XRD) and by confocal scanning laser microscopy (CSLM) measurements. Relaxation NMR experiments on composite hydrogels showed the presence of two types of water sites in their gel networks, such as free and bound water. Mechanical tests showed that the mechanical properties of composites are one order of magnitude less than those of compact bone but comparable to those of porous bone. The enzymatic degradation rates of composites showed slow degradation processes. The yields of degradation were estimated to be less than 10\% by loss of mass, after incubation with lysozyme, for a period of 50 days. Since the composite materials were found biocompatible by the in vivo tests, the simple mode of their fabrication and their properties recommend them as potential candidates for the non-load bearing bone substitute materials.}, language = {en} } @phdthesis{Sobal2003, author = {Sobal, Neli}, title = {Kolloidale Nanosysteme aus magnetischen und metallischen Materialien : Synthese und Charakterisierung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001071}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Ein Spezialgebiet der modernen Mikroelektronik ist die Miniaturisierung und Entwicklung von neuen nanostrukturierten und Komposit-Materialen aus 3d-Metallen. Durch geeignete Zusammensetzungen k{\"o}nnen diese sowohl mit einer hohen S{\"a}ttigungsmagnetisierung und Koerzitivfeldst{\"a}rke als mit besserer Oxidationsbest{\"a}ndigkeit im Vergleich zu den reinen Elementen erzielt werden. In der vorliegenden Arbeit werden neue Methoden f{\"u}r die Herstellung von bimetallischen kolloidalen Nanopartikeln vor allem mit einer Kern-H{\"u}lle-Struktur (Kern@H{\"u}lle) pr{\"a}sentiert. Bei der {\"u}berwiegenden Zahl der vorgestellten Reaktionen handelt es sich um die thermische Zersetzung von metallorganischen Verbindungen wie Kobaltcarbonyl, Palladium- und Platinacetylacetonate oder die chemische Reduktion von Metallsalze mit langkettigem Alkohol in organischem L{\"o}sungsmittel. Daneben sind auch Kombinationen aus diesen beiden Verfahren beschrieben. Es wurden Kolloide aus einem reinen Edelmetall (Pt, Pd, Ag) in einem organischen L{\"o}sungsmittel synthetisiert und daraus neue, bisher in dieser Form nicht bekannte Ag@Co-, Pt@Co-, Pd@Co- und Pt@Pd@Co-Nanopartikel gewonnen. Der Kobaltgehalt der Ag@Co-, Teilchen konnte im Bereich von 5 bis 73 At. \% beliebig eingestellt werden. Der mittlere Durchmesser der Ag@Co-Partikel wurde von 5 nm bis 15 nm variiert. Bei der Herstellung von Pt@Co-Teilchen wurde eine unterschiedlich dicke Kobalt-H{\"u}lle von ca. 1,0 bis 2,5 nm erzielt. Im Fall des Palladiums wurden sowohl monodispere als auch polydisperse Pd-Nanopartikel mit einer maximal 1,7-2,0nm dicken Kobalth{\"u}lle synthetisiert. Ein großer Teil dieser Arbeit befasst sich mit den magnetischen Eigenschaften der kolloidalen Teilchen, wobei die SQUID-Magnetometrie und R{\"o}ntgenzirkulardichroismus (XMCD) daf{\"u}r eingesetzt wurden. Weil magnetische Messungen alleine nur indirekte Schl{\"u}sse {\"u}ber die untersuchten Systeme erlauben, wurde dabei besonderer Wert auf die m{\"o}glichst genaue strukturelle Charakterisierung der Proben mittels moderner Untersuchungsmethoden gelegt. R{\"o}ntgendiffraktometrie (XRD), R{\"o}ntgenabsorptionsfeinstruktur- (EXAFS) und UV-Vis-Spektroskopie sowie Transmissionselektronenmikroskopie (TEM) in Kombination mit Elektronen Energieverlustspektroskopie (EELS) und energiedispersive R{\"o}ntgenfluoreszensanalyse (EDX) wurden verwendet.}, language = {de} }