@phdthesis{Buha2008, author = {Buha, Jelena}, title = {Nonaqueous syntheses of metal oxide and metal nitride nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18368}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Nanostructured materials are materials consisting of nanoparticulate building blocks on the scale of nanometers (i.e. 10-9 m). Composition, crystallinity and morphology can enhance or even induce new properties of the materials, which are desirable for todays and future technological applications. In this work, we have shown new strategies to synthesise metal oxide and metal nitride nanomaterials. The first part of the work deals with the study of nonaqueous synthesis of metal oxide nanoparticles. We succeeded in the synthesis of In2O3 nanopartcles where we could clearly influence the morphology by varying the type of the precursors and the solvents; of ZnO mesocrystals by using acetonitrile as a solvent; of transition metal oxides (Nb2O5, Ta2O5 and HfO2) that are particularly hard to obtain on the nanoscale and other technologically important materials. Solvothermal synthesis however is not restricted to formation of oxide materials only. In the second part we show examples of nonaqueous, solvothermal reactions of metal nitrides, but the main focus lies on the investigation of the influence of different morphologies of metal oxide precursors on the formation of the metal nitride nanoparticles. In spite of various reports, the number and variety of nanocrystalline metal nitrides is marginally small by comparison to metal oxides; hence preformed metal oxides as precursors for the preparation of metal nitrides are a logical choice. By reacting oxide nanoparticles with cyanamide, urea or melamine, at temperatures of 800 to 900 °C under nitrogen flow metal nitrides could be obtained. We studied in detail the influence of the starting material and realized that size, crystallinity, type of nitrogen source and temperature play the most important role. We have managed to propose and verify a dissolution-recrystallisation model as the formation mechanism. Furthermore we could show that the initial morphology of the oxides could be retained when ammonia flow was used instead.}, language = {en} } @phdthesis{Garnweitner2005, author = {Garnweitner, Georg}, title = {Nichtw{\"a}ssrige Synthese und Bildungsmechanismus von {\"U}bergangsmetalloxid-Nanopartikeln = Nonaqueous synthesis of transition-metal oxide nanoparticles and their formation mechanism}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5892}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {In this work, the nonaqueous synthesis of binary and ternary metal oxide nanoparticles is investigated for a number of technologically important materials. A strong focus was put on studying the reaction mechanisms leading to particle formation upon solvothermal treatment of the precursors, as an understanding of the formation processes is expected to be crucial for a better control of the systems, offering the potential to tailor particle size and morphology. The synthesis of BaTiO3 was achieved by solvothermal reaction of metallic barium and titanium isopropoxide in organic solvents. Phase-pure, highly crystalline particles about 6 nm in size resulted in benzyl alcohol, whereas larger particles could be obtained in ketones such as acetone or acetophenone. In benzyl alcohol, a novel mechanism was found to lead to BaTiO3, involving a C-C coupling step between the isopropoxide ligand and the benzylic carbon of the solvent. The resulting coupling product, 4-phenyl-2-butanol, is found in almost stoichiometric yield. The particle formation in ketones proceeds via a Ti-mediated aldol condensation of the solvent, involving formal elimination of water which induces formation of the oxide. These processes also occurred when reacting solely the titanium alkoxide with ketones or aldehydes, leading to highly crystalline anatase nanoparticles for all tested solvents. In ketones, also the synthesis of nanopowders of lead zirconate titanate (PZT) was achieved, which were initially amorphous but could be crystallized by calcination at moderate temperatures. Additionally, PZT films were prepared by simply casting a suspension of the powder onto Si substrates followed by calcination.Solvothermal synthesis however is not restricted to alkoxides as precursors but is also achieved from metal acetylacetonates. The use of benzylamine as solvent proved particularly versatile, making possible the synthesis of nanocrystalline In2O3, Ga2O3, ZnO and iron oxide from the respective acetylacetonates. During the synthesis, the acetylacetonate ligand undergoes a solvolysis under C-C cleavage, resulting in metal-bound enolate ligands which, in analogy to the synthesis in ketones, induce ketimine and aldol condensation reactions. In the last section of this work, surface functionalization of anatase nanoparticles is explored. The particles were first capped with various organic ligands via a facile in situ route, which resulted in altered properties such as enhanced dispersibility in various solvents. In a second step, short functional oligopeptide segments were attached to the particles by means of a catechol linker to achieve advanced self-assembly properties.}, subject = {Nanopartikel}, language = {en} }