@article{KornhuberPetoukhovPetrietal.2016, author = {Kornhuber, Kai and Petoukhov, Vladimir and Petri, Stefan and Rahmstorf, Stefan and Coumou, Dim}, title = {Evidence for wave resonance as a key mechanism for generating high-amplitude quasi-stationary waves in boreal summer}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {49}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-016-3399-6}, pages = {1961 -- 1979}, year = {2016}, abstract = {Several recent northern hemisphere summer extremes have been linked to persistent high-amplitude wave patterns (e.g. heat waves in Europe 2003, Russia 2010 and in the US 2011, Floods in Pakistan 2010 and Europe 2013). Recently quasi-resonant amplification (QRA) was proposed as a mechanism that, when certain dynamical conditions are fulfilled, can lead to such high-amplitude wave events. Based on these resonance conditions a detection scheme to scan reanalysis data for QRA events in boreal summer months was implemented. With this objective detection scheme we analyzed the occurrence and duration of QRA events and the associated atmospheric flow patterns in 1979-2015 reanalysis data. We detect a total number of 178 events for wave 6, 7 and 8 and find that during roughly one-third of all high amplitude events QRA conditions were met for respective waves. Our analysis reveals a significant shift for quasi-stationary waves 6 and 7 towards high amplitudes during QRA events, lagging first QRA-detection by typically one week. The results provide further evidence for the validity of the QRA hypothesis and its important role in generating high amplitude waves in boreal summer.}, language = {en} } @article{SchneiderWalzAlbertetal.2021, author = {Schneider, Philipp and Walz, Ariane and Albert, Christian and Lipp, Torsten}, title = {Ecosystem-based adaptation in cities}, series = {Land use policy}, volume = {109}, journal = {Land use policy}, publisher = {Elsevier}, address = {Oxford}, issn = {0264-8377}, doi = {10.1016/j.landusepol.2021.105722}, pages = {11}, year = {2021}, abstract = {Extreme weather events like heavy rainfall and heat waves will likely increase in intensity and frequency due to climate change. As the impacts of these extremes are particularly prominent in urban agglomerations, cities face an urgent need to develop adaptation strategies. Ecosystem-based Adaptation (EbA) provides helpful strategies that harness ecological processes in addition to technical interventions. EbA has been addressed in informal adaptation planning. Formal municipality planning, namely landscape planning, is supposed to include traditionally some EbA measures, although adaptation has not been their explicit focus. Our research aims to investigate how landscape plans incorporate climate-related extremes and EbA as well as to discuss the potential to enhance EbA uptake in formal planning. We conducted a document analysis of informal planning documents from 85 German cities and the analysis of formal landscape plans of 61 of these cities. The results suggest that city size does affect the extent of informal planning instruments and the comprehensiveness of formal landscape plans. Climate-related extremes and EbA measures have traditionally been part of landscape planning. Almost all landscape plans address heat stress, while climate change and heavy rain have been addressed less often, though more frequently since 2008. Greening of walls and roofs, on-site infiltration and water retention reveal significant potential for better integration in landscape plans. Landscape planning offers an entry point for effective climate adaptation through EbA in cities. Informal and formal planning instruments should be closely combined for robust, spatially explicit, legally binding implementation of EbA measures in the future.}, language = {en} }