@article{ZellmeierBrennerJanietzetal.2018, author = {Zellmeier, M. and Brenner, Thomas J. K. and Janietz, Silvia and Nickel, N. H. and Rappich, J.}, title = {Polythiophenes as emitter layers for crystalline silicon solar cells}, series = {Journal of applied physics}, volume = {123}, journal = {Journal of applied physics}, number = {3}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/1.5006625}, pages = {5}, year = {2018}, abstract = {We investigated the influence of the emitter (amorphous-Si, a-Si, or polythiophene derivatives: poly(3-hexylthiophene), P3HT, and poly(3-[3,6-dioxaheptyl]-thiophene), P3DOT) and the interface passivation (intrinsic a-Si or SiOX and methyl groups or SiOX) on the c-Si based 1 × 1 cm2 planar hybrid heterojunction solar cell parameters. We observed higher short circuit currents for the P3HT or P3DOT/c-Si solar cells than those obtained for a-Si/c-Si devices, independent of the interface passivation. The obtained VOC of 659 mV for the P3DOT/SiOX/c-Si heterojunction solar cell with hydrophilic 3,6-dioxaheptyl side chains is among the highest reported for c-Si/polythiophene devices. The maximum power conversion efficiency, PCE, was 11\% for the P3DOT/SiOX/c-Si heterojunction solar cell. Additionally, our wafer lifetime measurements reveal a field effect passivation in the wafer induced by the polythiophenes when deposited on c-Si.}, language = {en} } @article{KurpiersFerronRolandetal.2018, author = {Kurpiers, Jona and Ferron, Thomas and Roland, Steffen and Jakoby, Marius and Thiede, Tobias and Jaiser, Frank and Albrecht, Steve and Janietz, Silvia and Collins, Brian A. and Howard, Ian A. and Neher, Dieter}, title = {Probing the pathways of free charge generation in organic bulk heterojunction solar cells}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-04386-3}, pages = {11}, year = {2018}, abstract = {The fact that organic solar cells perform efficiently despite the low dielectric constant of most photoactive blends initiated a long-standing debate regarding the dominant pathways of free charge formation. Here, we address this issue through the accurate measurement of the activation energy for free charge photogeneration over a wide range of photon energy, using the method of time-delayed collection field. For our prototypical low bandgap polymer:fullerene blends, we find that neither the temperature nor the field dependence of free charge generation depend on the excitation energy, ruling out an appreciable contribution to free charge generation though hot carrier pathways. On the other hand, activation energies are on the order of the room temperature thermal energy for all studied blends. We conclude that charge generation in such devices proceeds through thermalized charge transfer states, and that thermal energy is sufficient to separate most of these states into free charges.}, language = {en} } @article{PingelArvindKoellnetal.2016, author = {Pingel, Patrick and Arvind, Malavika and K{\"o}lln, Lisa and Steyrleuthner, Robert and Kraffert, Felix and Behrends, Jan and Janietz, Silvia and Neher, Dieter}, title = {p-Type Doping of Poly(3-hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane}, series = {Advanced electronic materials}, volume = {2}, journal = {Advanced electronic materials}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2199-160X}, doi = {10.1002/aelm.201600204}, pages = {7}, year = {2016}, abstract = {State-of-the-art p-type doping of organic semiconductors is usually achieved by employing strong -electron acceptors, a prominent example being tetrafluorotetracyanoquinodimethane (F(4)TCNQ). Here, doping of the semiconducting model polymer poly(3-hexylthiophene), P3HT, using the strong Lewis acid tris(pentafluorophenyl)borane (BCF) as a dopant, is investigated by admittance, conductivity, and electron paramagnetic resonance measurements. The electrical characteristics of BCF- and F(4)TCNQ-doped P3HT layers are shown to be very similar in terms of the mobile hole density and the doping efficiency. Roughly 18\% of the employed dopants create mobile holes in either F-4 TCNQ- or BCF-doped P3HT, while the majority of doping-induced holes remain strongly Coulomb-bound to the dopant anions. Despite similar hole densities, conductivity and hole mobility are higher in BCF-doped P3HT layers than in F(4)TCNQ-doped samples. This and the good solubility in many organic solvents render BCF very useful for p-type doping of organic semiconductors.}, language = {en} } @article{AlbrechtTumblestonJanietzetal.2014, author = {Albrecht, Steve and Tumbleston, John R. and Janietz, Silvia and Dumsch, Ines and Allard, Sybille and Scherf, Ullrich and Ade, Harald W. and Neher, Dieter}, title = {Quantifying charge extraction in organic solar cells: The case of fluorinated PCPDTBT}, series = {The journal of physical chemistry letters}, volume = {5}, journal = {The journal of physical chemistry letters}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/jz500457b}, pages = {1131 -- 1138}, year = {2014}, abstract = {We introduce a new and simple method to quantify the effective extraction mobility in organic solar cells at low electric fields and charge carrier densities comparable to operation conditions under one sun illumination. By comparing steady-state carrier densities at constant illumination intensity and under open-circuit conditions, the gradient of the quasi-Fermi potential driving the current is estimated as a function of external bias and charge density. These properties are then related to the respective steady-state current to determine the effective extraction mobility. The new technique is applied to different derivatives of the well-known low-band-gap polymer PCPDTBT blended with PC70BM. We show that the slower average extraction due to lower mobility accounts for the moderate fill factor when solar cells are fabricated with mono- or difluorinated PCPDTBT. This lower extraction competes with improved generation and reduced nongeminate recombination, rendering the monofluorinated derivative the most efficient donor polymer.}, language = {en} } @article{AlbrechtJanietzSchindleretal.2012, author = {Albrecht, Steve and Janietz, Silvia and Schindler, Wolfram and Frisch, Johannes and Kurpiers, Jona and Kniepert, Juliane and Inal, Sahika and Pingel, Patrick and Fostiropoulos, Konstantinos and Koch, Norbert and Neher, Dieter}, title = {Fluorinated Copolymer PCPDTBT with enhanced open-circuit voltage and reduced recombination for highly efficient polymer solar cells}, series = {Journal of the American Chemical Society}, volume = {134}, journal = {Journal of the American Chemical Society}, number = {36}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/ja305039j}, pages = {14932 -- 14944}, year = {2012}, abstract = {A novel fluorinated copolymer (F-PCPDTBT) is introduced and shown to exhibit significantly higher power conversion efficiency in bulk heterojunction solar cells with PC70BM compared to the well-known low-band-gap polymer PCPDTBT. Fluorination lowers the polymer HOMO level, resulting in high open-circuit voltages well exceeding 0.7 V. Optical spectroscopy and morphological studies with energy-resolved transmission electron microscopy reveal that the fluorinated polymer aggregates more strongly in pristine and blended layers, with a smaller amount of additives needed to achieve optimum device performance. Time-delayed collection field and charge extraction by linearly increasing voltage are used to gain insight into the effect of fluorination on the field dependence of free charge-carrier generation and recombination. F-PCPDTBT is shown to exhibit a significantly weaker field dependence of free charge-carrier generation combined with an overall larger amount of free charges, meaning that geminate recombination is greatly reduced. Additionally, a 3-fold reduction in non-geminate recombination is measured compared to optimized PCPDTBT blends. As a consequence of reduced non-geminate recombination, the performance of optimized blends of fluorinated PCPDTBT with PC70BM is largely determined by the field dependence of free-carrier generation, and this field dependence is considerably weaker compared to that of blends comprising the non-fluorinated polymer. For these optimized blends, a short-circuit current of 14 mA/cm(2), an open-circuit voltage of 0.74 V, and a fill factor of 58\% are achieved, giving a highest energy conversion efficiency of 6.16\%. The superior device performance and the low band-gap render this new polymer highly promising for the construction of efficient polymer-based tandem solar cells.}, language = {en} } @article{SchattauerReinholdAlbrechtetal.2012, author = {Schattauer, Sylvia and Reinhold, Beate and Albrecht, Steve and Fahrenson, Christoph and Schubert, Marcel and Janietz, Silvia and Neher, Dieter}, title = {Influence of sintering on the structural and electronic properties of TiO2 nanoporous layers prepared via a non-sol-gel approach}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {290}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {18}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-012-2708-9}, pages = {1843 -- 1854}, year = {2012}, abstract = {In this work, a nonaqueous method is used to fabricate thin TiO2 layers. In contrast to the common aqueous sol-gel approach, our method yields layers of anatase nanocrystallites already at low temperature. Raman spectroscopy, electron microscopy and charge extraction by linearly increasing voltage are employed to study the effect of sintering temperature on the structural and electronic properties of the nanocrystalline TiO2 layer. Raising the sintering temperature from 120 to 600 A degrees C is found to alter the chemical composition, the layer's porosity and its surface but not the crystal phase. The room temperature mobility increases from 2 x 10(-6) to 3 x 10(-5) cm(2)/Vs when the sinter temperature is increased from 400 to 600 A degrees C, which is explained by a better interparticle connectivity. Solar cells comprising such nanoporous TiO2 layers and a soluble derivative of cyclohexylamino-poly(p-phenylene vinylene) were fabricated and studied with regard to their structural and photovoltaic properties. We found only weak polymer infiltration into the oxide layer for sintering temperatures up to 550 A degrees C, while the polymer penetrated deeply into titania layers that were sintered at 600 A degrees C. Best photovoltaic performance was reached with a nanoporous TiO2 film sintered at 550 A degrees C, which yielded a power conversion efficiency of 0.5 \%. Noticeably, samples with the TiO2 layer dried at 120 A degrees C displayed short-circuit currents and open circuit voltages only about 15-20 \% lower than for the most efficient devices, meaning that our nonaqueous route yields titania layers with reasonable transport properties even at low sintering temperatures.}, language = {en} } @article{LangeKniepertPingeletal.2013, author = {Lange, Ilja and Kniepert, Juliane and Pingel, Patrick and Dumsch, Ines and Allard, Sybille and Janietz, Silvia and Scherf, Ullrich and Neher, Dieter}, title = {Correlation between the open circuit voltage and the energetics of organic bulk heterojunction solar cells}, series = {The journal of physical chemistry letters}, volume = {4}, journal = {The journal of physical chemistry letters}, number = {22}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/jz401971e}, pages = {3865 -- 3871}, year = {2013}, abstract = {A detailed investigation of the open circuit voltage (V-OC) of organic bulk heterojunction solar cells comprising three different donor polymers and two different fullerene-based acceptors is presented. Bias amplified charge extraction (BACE) is combined with Kelvin Probe measurements to derive information on the relevant energetics in the blend. On the example of P3HT:PC70BM the influence of composition and preparation conditions on the relevant transport levels will be shown. Moderate upward shifts of the P3HT HOMO depending on crystallinity are observed, but contrarily to common believe, the dependence of V-OC on blend composition and thermal history is found to be largely determined by the change in the PCBM LUMO energy. Following this approach, we quantified the energetic contribution to the V-OC in blends with fluorinated polymers or higher adduct fullerenes.}, language = {en} } @article{ZenSaphiannikovaNeheretal.2006, author = {Zen, Achmad and Saphiannikova, Marina and Neher, Dieter and Grenzer, J{\"o}rg and Grigorian, Souren A. and Pietsch, Ullrich and Asawapirom, Udom and Janietz, Silvia and Scherf, Ullrich and Lieberwirth, Ingo and Wegner, Gerhard}, title = {Effect of molecular weight on the structure and crystallinity of poly(3-hexylthiophene)}, doi = {10.1021/Ma0521349}, year = {2006}, abstract = {Recently, two different groups have reported independently that the mobility of field-effect transistors made from regioregular poly(3-hexylthiophene) (P3HT) increases strongly with molecular weight. Two different models were presented: one proposing carrier trapping at grain boundaries and the second putting emphasis on the conformation and packing of the polymer chains in the thin layers for different molecular weights. Here, we present the results of detailed investigations of powders and thin films of deuterated P3HT fractions with different molecular weight. For powder samples, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to investigate the structure and crystallization behavior of the polymers. The GPC investigations show that all weight fractions possess a rather broad molecular weight distribution. DSC measurements reveal a strong decrease of the crystallization temperature and, most important, a significant decrease of the degree of crystallinity with decreasing molecular weight. To study the structure of thin layers in lateral and vertical directions, both transmission electron microscopy (TEM) and X-ray grazing incidence diffraction (GID) were utilized. These methods show that thin layers of the low molecular weight fraction consist of well-defined crystalline domains embedded in a disordered matrix. We propose that the transport properties of layers prepared from fractions of poly(3-hexylthiophene) with different molecular weight are largely determined by the crystallinity of the samples and not by the perfection of the packing of the chains in the individual crystallites}, language = {en} } @article{SchulzKnochenhauerBrehmeretal.1994, author = {Schulz, Burkhard and Knochenhauer, Gerald and Brehmer, Ludwig and Janietz, Silvia}, title = {Stuctures and properties of aromatic poly(1,3,4-oxadiazole)s}, year = {1994}, language = {en} } @article{SchulzJanietz1994, author = {Schulz, Burkhard and Janietz, Silvia}, title = {Electrochemical studies on thin films of poly(arylene 1,3,4-oxadiazole)s}, year = {1994}, language = {en} } @article{JanietzSchulz1994, author = {Janietz, Silvia and Schulz, Burkhard}, title = {Electrochemical studies on thin films of poly(arylene-1,3,4-oxadiazole)s}, year = {1994}, language = {en} } @article{JanietzFreydank1995, author = {Janietz, Silvia and Freydank, A.}, title = {Elektrochemische Untersuchungen aromatischer 1,3,4-Oxadiazole in L{\"o}sungen und als d{\"u}nne Schichten}, year = {1995}, language = {de} } @article{SchulzKnochenhauerBrehmeretal.1995, author = {Schulz, Burkhard and Knochenhauer, Gerald and Brehmer, Ludwig and Janietz, Silvia}, title = {Stuctures and properties of aromatic poly(1,3,4-oxadiazole)s}, year = {1995}, language = {en} } @article{SchulzJanietz1995, author = {Schulz, Burkhard and Janietz, Silvia}, title = {Preparation and characterization of thin films containing aromatic poly(1,3,4- oxadiazole)s}, year = {1995}, language = {en} } @article{JanietzSchulz1995, author = {Janietz, Silvia and Schulz, Burkhard}, title = {Elektrochemische Untersuchungen an aromatischen Poly(1,3,4-oxadiazol)en}, year = {1995}, language = {de} } @article{JanietzSchulz1996, author = {Janietz, Silvia and Schulz, Burkhard}, title = {Electrochemical investigation on poly(arylene-1,3,4-oxadiazole)s}, year = {1996}, language = {en} } @article{FreydankJanietzSchulz1998, author = {Freydank, Anke-Christine and Janietz, Silvia and Schulz, Burkhard}, title = {Synthesis and electrochemical characterization of new amphiphilic 1,3,4-oxadiazoles}, year = {1998}, abstract = {The electrochemical behaviour of new amphiphilic 1,3,4-oxadiazoles were studied by cyclic voltammetry. The influence of the supra- molecular structure on the redox behaviour in liquid or solid solutions, in Langmuir-Blodgett multilayers, and in amorphous films is investigated in detail. The reversible reduction of amphiphilic 2,5-diarylene- 1,3,4-oxadiazoles is significantly influenced by substituents in the para position of the phenylene ring. In the solid states the reduction peak potentials are shifted to more negative values compared to data measured in solution. This shift increases as the film thickness is increased. An influence of the supramolecular order in the solid films was not found. In-situ UV-vis spectroelectrochemistry of LB-multilayers deposited onto indium tin oxide (ITO) glass give evidence for the formation of radical anions in the highly ordered layer.}, language = {en} } @article{FreydankJanietzSchulz1998, author = {Freydank, Anke-Christine and Janietz, Silvia and Schulz, Burkhard}, title = {Synthesis and electrochemical behaviour of Amphiphilic 1,3,4-Oxadiazole derivatives}, year = {1998}, language = {en} } @phdthesis{Janietz2002, author = {Janietz, Silvia}, title = {Zusammnenh{\"a}nge zwischen Struktur, elektrochemischem Redoxverhalten und dem Einsatz von organischen Halbleitern in der Elektronik}, pages = {78 S., Anh.}, year = {2002}, language = {de} }