@article{FlossKlamrothSaalfrank2011, author = {Floss, Gereon and Klamroth, Tillmann and Saalfrank, Peter}, title = {Laser-controlled switching of molecular arrays in an dissipative environment}, series = {Physical review : B, Condensed matter and materials physics}, volume = {83}, journal = {Physical review : B, Condensed matter and materials physics}, number = {10}, publisher = {American Physical Society}, address = {College Park}, issn = {1098-0121}, doi = {10.1103/PhysRevB.83.104301}, pages = {9}, year = {2011}, abstract = {The optical switching of molecular ensembles in a dissipative environment is a subject of various fields of chemical physics and physical chemistry. Here we try to switch arrays of molecules from a stable collective ground state to a state in which all molecules have been transferred to another stable higher-energy configuration. In our model switching proceeds through electronically excited intermediates which are coherently coupled to each other through dipolar interactions, and which decay incoherently within a finite lifetime by coupling to a dissipative environment. The model is quite general, but parameters are chosen to roughly resemble the all-trans -> all-cis isomerization of an array of azobenzene molecules on a surface. Using analytical and optimal control pulses and the concept of "laser distillation," we demonstrate that for various aggregates (dimers up to hexamers), controlled and complete switching should be possible.}, language = {en} }