@phdthesis{Meessen2019, author = {Meeßen, Christian}, title = {The thermal and rheological state of the Northern Argentinian foreland basins}, doi = {10.25932/publishup-43994}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439945}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 151}, year = {2019}, abstract = {The foreland of the Andes in South America is characterised by distinct along strike changes in surface deformational styles. These styles are classified into two end-members, the thin-skinned and the thick-skinned style. The superficial expression of thin-skinned deformation is a succession of narrowly spaced hills and valleys, that form laterally continuous ranges on the foreland facing side of the orogen. Each of the hills is defined by a reverse fault that roots in a basal d{\´e}collement surface within the sedimentary cover, and acted as thrusting ramp to stack the sedimentary pile. Thick-skinned deformation is morphologically characterised by spatially disparate, basement-cored mountain ranges. These mountain ranges are uplifted along reactivated high-angle crustal-scale discontinuities, such as suture zones between different tectonic terranes. Amongst proposed causes for the observed variation are variations in the dip angle of the Nazca plate, variation in sediment thickness, lithospheric thickening, volcanism or compositional differences. The proposed mechanisms are predominantly based on geological observations or numerical thermomechanical modelling, but there has been no attempt to understand the mechanisms from a point of data-integrative 3D modelling. The aim of this dissertation is therefore to understand how lithospheric structure controls the deformational behaviour. The integration of independent data into a consistent model of the lithosphere allows to obtain additional evidence that helps to understand the causes for the different deformational styles. Northern Argentina encompasses the transition from the thin-skinned fold-and-thrust belt in Bolivia, to the thick-skinned Sierras Pampeanas province, which makes this area a well suited location for such a study. The general workflow followed in this study first involves data-constrained structural- and density-modelling in order to obtain a model of the study area. This model was then used to predict the steady-state thermal field, which was then used to assess the present-day rheological state in northern Argentina. The structural configuration of the lithosphere in northern Argentina was determined by means of data-integrative, 3D density modelling verified by Bouguer gravity. The model delineates the first-order density contrasts in the lithosphere in the uppermost 200 km, and discriminates bodies for the sediments, the crystalline crust, the lithospheric mantle and the subducting Nazca plate. To obtain the intra-crustal density structure, an automated inversion approach was developed and applied to a starting structural model that assumed a homogeneously dense crust. The resulting final structural model indicates that the crustal structure can be represented by an upper crust with a density of 2800 kg/m³, and a lower crust of 3100 kg/m³. The Transbrazilian Lineament, which separates the Pampia terrane from the R{\´i}o de la Plata craton, is expressed as a zone of low average crustal densities. In an excursion, we demonstrate in another study, that the gravity inversion method developed to obtain intra-crustal density structures, is also applicable to obtain density variations in the uppermost lithospheric mantle. Densities in such sub-crustal depths are difficult to constrain from seismic tomographic models due to smearing of crustal velocities. With the application to the uppermost lithospheric mantle in the north Atlantic, we demonstrate in Tan et al. (2018) that lateral density trends of at least 125\,km width are robustly recovered by the inversion method, thereby providing an important tool for the delineation of subcrustal density trends. Due to the genetic link between subduction, orogenesis and retroarc foreland basins the question rises whether the steady-state assumption is valid in such a dynamic setting. To answer this question, I analysed (i) the impact of subduction on the conductive thermal field of the overlying continental plate, (ii) the differences between the transient and steady-state thermal fields of a geodynamic coupled model. Both studies indicate that the assumption of a thermal steady-state is applicable in most parts of the study area. Within the orogenic wedge, where the assumption cannot be applied, I estimated the transient thermal field based on the results of the conducted analyses. Accordingly, the structural model that had been obtained in the first step, could be used to obtain a 3D conductive steady-state thermal field. The rheological assessment based on this thermal field indicates that the lithosphere of the thin-skinned Subandean ranges is characterised by a relatively strong crust and a weak mantle. Contrarily, the adjacent foreland basin consists of a fully coupled, very strong lithosphere. Thus, shortening in northern Argentina can only be accommodated within the weak lithosphere of the orogen and the Subandean ranges. The analysis suggests that the d{\´e}collements of the fold-and-thrust belt are the shallow continuation of shear zones that reside in the ductile sections of the orogenic crust. Furthermore, the localisation of the faults that provide strain transfer between the deeper ductile crust and the shallower d{\´e}collement is strongly influenced by crustal weak zones such as foliation. In contrast to the northern foreland, the lithosphere of the thick-skinned Sierras Pampeanas is fully coupled and characterised by a strong crust and mantle. The high overall strength prevents the generation of crustal-scale faults by tectonic stresses. Even inherited crustal-scale discontinuities, such as sutures, cannot sufficiently reduce the strength of the lithosphere in order to be reactivated. Therefore, magmatism that had been identified to be a precursor of basement uplift in the Sierras Pampeanas, is the key factor that leads to the broken foreland of this province. Due to thermal weakening, and potentially lubrication of the inherited discontinuities, the lithosphere is locally weakened such that tectonic stresses can uplift the basement blocks. This hypothesis explains both the spatially disparate character of the broken foreland, as well as the observed temporal delay between volcanism and basement block uplift. This dissertation provides for the first time a data-driven 3D model that is consistent with geophysical data and geological observations, and that is able to causally link the thermo-rheological structure of the lithosphere to the observed variation of surface deformation styles in the retroarc foreland of northern Argentina.}, language = {en} } @phdthesis{Zapata2019, author = {Zapata, Sebastian Henao}, title = {Paleozoic to Pliocene evolution of the Andean retroarc between 26 and 28°S: interactions between tectonics, climate, and upper plate architecture}, doi = {10.25932/publishup-43903}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439036}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2019}, abstract = {Interactions and feedbacks between tectonics, climate, and upper plate architecture control basin geometry, relief, and depositional systems. The Andes is part of a longlived continental margin characterized by multiple tectonic cycles which have strongly modified the Andean upper plate architecture. In the Andean retroarc, spatiotemporal variations in the structure of the upper plate and tectonic regimes have resulted in marked along-strike variations in basin geometry, stratigraphy, deformational style, and mountain belt morphology. These along-strike variations include high-elevation plateaus (Altiplano and Puna) associated with a thin-skin fold-and-thrust-belt and thick-skin deformation in broken foreland basins such as the Santa Barbara system and the Sierras Pampeanas. At the confluence of the Puna Plateau, the Santa Barbara system and the Sierras Pampeanas, major along-strike changes in upper plate architecture, mountain belt morphology, basement exhumation, and deformation style can be recognized. I have used a source to sink approach to unravel the spatiotemporal tectonic evolution of the Andean retroarc between 26 and 28°S. I obtained a large low-temperature thermochronology data set from basement units which includes apatite fission track, apatite U-Th-Sm/He, and zircon U-Th/He (ZHe) cooling ages. Stratigraphic descriptions of Miocene units were temporally constrained by U-Pb LA-ICP-MS zircon ages from interbedded pyroclastic material. Modeled ZHe ages suggest that the basement of the study area was exhumed during the Famatinian orogeny (550-450 Ma), followed by a period of relative tectonic quiescence during the Paleozoic and the Triassic. The basement experienced horst exhumation during the Cretaceous development of the Salta rift. After initial exhumation, deposition of thick Cretaceous syn-rift strata caused reheating of several basement blocks within the Santa Barbara system. During the Eocene-Oligocene, the Andean compressional setting was responsible for the exhumation of several disconnected basement blocks. These exhumed blocks were separated by areas of low relief, in which humid climate and low erosion rates facilitated the development of etchplains on the crystalline basement. The exhumed basement blocks formed an Eocene to Oligocene broken foreland basin in the back-bulge depozone of the Andean foreland. During the Early Miocene, foreland basin strata filled up the preexisting Paleogene topography. The basement blocks in lower relief positions were reheated; associated geothermal gradients were higher than 25°C/km. Miocene volcanism was responsible for lateral variations on the amount of reheating along the Campo-Arenal basin. Around 12 Ma, a new deformational phase modified the drainage network and fragmented the lacustrine system. As deformation and rock uplift continued, the easily eroded sedimentary cover was efficiently removed and reworked by an ephemeral fluvial system, preventing the development of significant relief. After ~6 Ma, the low erodibility of the basement blocks which began to be exposed caused relief increase, leading to the development of stable fluvial systems. Progressive relief development modified atmospheric circulation, creating a rainfall gradient. After 3 Ma, orographic rainfall and high relief lead to the development of proximal fluvial-gravitational depositional systems in the surrounding basins.}, language = {en} }