@phdthesis{Zhao2021, author = {Zhao, Yuhang}, title = {Synthesis and surface functionalization on plasmonic nanoparticles for optical applications}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 149}, year = {2021}, abstract = {This thesis focuses on the synthesis of novel functional materials based on plasmonic nanoparticles. Three systems with targeted surface modification and functionalization have been designed and synthesized, involving modified perylenediimide doped silica-coated silver nanowires, polydopamine or TiO2 coated gold-palladium nanorods and thiolated poly(ethylene glycol) (PEG-SH)/dodecanethiol (DDT) modified silver nanospheres. Their possible applications as plasmonic resonators, chiral sensors as well as photo-catalysts have been studied. In addition, the interaction between silver nanospheres and 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) molecules has also been investigated in detail. In the first part of the thesis, surface modification on Ag nanowires (NWs) with optimized silica coating through a modified St{\"o}ber method has been firstly conducted, employing sodium hydroxide (NaOH) to replace ammonia solution (NH4OH). The coated silver nanowires with a smooth silica shell have been investigated by single-particle dark-field scattering spectroscopy, transmission electron microscopy and electron-energy loss spectroscopy to characterize the morphologies and structural components. The silica-coated silver nanowires can be further functionalized with fluorescent molecules in the silica shell via a facile one-step coating method. The as-synthesized nanowire is further coupled with a gold nanosphere by spin-coating for the application of the sub-diffractional chiral sensor for the first time. The exciton-plasmon-photon interconversion in the system eases the signal detection in the perfectly matched 1D nanostructure and contributes to the high contrast of the subwavelength chiral sensing for the polarized light. In the second part of the thesis, dumbbell-shaped Au-Pd nanorods coated with a layer of polydopamine (PDA) or titanium dioxide (TiO2) have been constructed. The PDA- and TiO2- coated Au-Pd nanorods show a strong photothermal conversion performance under NIR illumination. Moreover, the catalytic performance of the particles has been investigated using the reduction of 4-nitrophenol (4-NP) as the model reaction. Under light irradiation, the PDA-coated Au-Pd nanorods exhibit a superior catalytic activity by increasing the reaction rate constant of 3 times. The Arrhenius-like behavior of the reaction with similar activation energies in the presence and absence of light irradiation indicates the photoheating effect to be the dominant mechanism of the reaction acceleration. Thus, we attribute the enhanced performance of the catalysis to the strong photothermal effect that is driven by the optical excitation of the gold surface plasmon as well as the synergy with the PDA layer. In the third part, the kinetic study on the adsorption of 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquino-dimethane (F4TCNQ) on the surface of Ag nanoparticles (Ag NPs) in chloroform has been reported in detail. Based on the results obtained from the UV-vis-NIR absorption spectroscopy, cryogenic transmission electron microscopy (cryo-TEM), scanning nano-beam electron diffraction (NBED) and electron energy loss spectroscopy (EELS), a two-step interaction kinetics has been proposed for the Ag NPs and F4TCNQ molecules. It includes the first step of electron transfer from Ag NPs to F4TCNQ indicated by the ionization of F4TCNQ, and the second step of the formation of Ag-F4TCNQ complex. The whole process has been followed via UV-vis-NIR absorption spectroscopy, which reveals distinct kinetics at two stages: the instantaneous ionization and the long-term complex formation. The kinetics and the influence of the molar ratio of Ag NPs/F4TCNQ molecules on the interaction between Ag NPs and F4TCNQ molecules in the organic solution are reported herein for the first time. Furthermore, the control experiment with silica-coated Ag NPs indicates that the charge transfer at the surface between Ag NPs and F4TCNQ molecules has been prohibited by a silica layer of 18 nm.}, language = {en} } @phdthesis{Sapei2007, author = {Sapei, Lanny}, title = {Characterisation of silica in Equisetum hyemale and its transformation into biomorphous ceramics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15883}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Equisetum spp. (horsetail / "Schachtelhalm") is the only surviving genus of the primitive Sphenopsids vascular plants which reached their zenith during the Carboniferous era. It is an herbaceous plant and is distinguished by jointed stems with fused whorl of nodal leaves. The plant has been used for scouring kitchen utensils and polishing wood during the past time due to its high silica encrustations in the epidermis. Equisetum hyemale (scouring rush) can accumulate silica up to 16\% dry weight in its tissue, which makes this plant an interesting candidate as a renewable resource of silica for the synthesis of biomorphous ceramics. The thesis comprises a comprehensive experimental study of silica accumulations in E.hyemale using different characterisation techniques at all hierarchical levels. The obtained results shed light on the local distribution, chemical form, crystallinity, and nanostructure of biogenic silica in E.hyemale which were quite unclear until now. Furthermore, isolation of biogenic silica from E.hyemale to obtain high grade mesoporous silica with high purity is investigated. Finally, syntheses of silicon carbide (b-SiC) by a direct thermoconversion process of E.hyemale is attempted, which is a promising material for high performance ceramics. It is found that silica is deposited continuously on the entire epidermal layer with the highest concentration on the knobs. The highest silicon content is at the knob tips (≈ 33\%), followed by epidermal flank (≈ 17\%), and inner lower knob (≈ 6\%), whereas there is almost no silicon found in the interior parts. Raman spectroscopy reveals the presence of at least two silica modifications in E.hyemale. The first type is pure hydrated amorphous silica restricted to the knob tips. The second type is accumulated on the entire continuous outer layer adjacent to the epidermis cell walls. It is lacking silanol groups and is intimately associated with polysaccharides (cellulose, hemicellulose, pectin) and inorganic compounds. Silica deposited in E.hyemale is found to be mostly amorphous with almost negligible amounts of crystalline silica in the form of a-quartz (< 7\%). The silica primary particles have a plate-like shape with a thickness of about 2 nm. Pure mesoporous amorphous silica with an open surface area up to 400 m2/g can be obtained from E.hyemale after leaching the plant with HCl to remove the inorganic impurities followed by a calcination treatment. The optimum calcination temperature appears to be around 500°C. Calcination of untreated E.hyemale causes a collapse of the biogenic silica structure which is mainly attributed to the detrimental action of alkali ions present in the native plant. Finally, pure b-SiC with a surface area of about 12 m2/g is obtained upon direct pyrolysis of HCl-treated E.hyemale samples in argon atmosphere. The original structure of native E.hyemale is substantially retained in the biomorphous b-SiC. The results of this thesis lead to a better understanding of the silicification process and allow to draw conclusions about the role of silica in E.hyemale. In particular, a templating role of the plant biopolymers for the synthesis of the nanostructured silica within the plant body can be deduced. Moreover, the high grade ultrafine amorphous silica isolated from E.hyemale promises applications as adsorbent and catalyst support and as silica source for the fabrication of silica-based composites. The synthesis of biomorphous b-SiC from sustainable and low-cost E.hyemale is still in its initial stage. The present thesis demonstrates the principal possibility of carbothermal synthesis of SiC from E.hyemale with the prospect of potential applications, for instance as refractory materials, catalyst supports, or high performance advanced ceramics.}, language = {en} }