@phdthesis{Adelt2024, author = {Adelt, Anne}, title = {The Relativized Minimality approach to comprehension of German relative clauses in aphasia}, doi = {10.25932/publishup-62331}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-623312}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 166}, year = {2024}, abstract = {It is a well-attested finding in head-initial languages that individuals with aphasia (IWA) have greater difficulties in comprehending object-extracted relative clauses (ORCs) as compared to subject-extracted relative clauses (SRCs). Adopting the linguistically based approach of Relativized Minimality (RM; Rizzi, 1990, 2004), the subject-object asymmetry is attributed to the occurrence of a Minimality effect in ORCs due to reduced processing capacities in IWA (Garraffa \& Grillo, 2008; Grillo, 2008, 2009). For ORCs, it is claimed that the embedded subject intervenes in the syntactic dependency between the moved object and its trace, resulting in greater processing demands. In contrast, no such intervener is present in SRCs. Based on the theoretical framework of RM and findings from language acquisition (Belletti et al., 2012; Friedmann et al., 2009), it is assumed that Minimality effects are alleviated when the moved object and the intervening subject differ in terms of relevant syntactic features. For German, the language under investigation, the RM approach predicts that number (i.e., singular vs. plural) and the lexical restriction [+NP] feature (i.e., lexically restricted determiner phrases vs. lexically unrestricted pronouns) are considered relevant in the computation of Minimality. Greater degrees of featural distinctiveness are predicted to result in more facilitated processing of ORCs, because IWA can more easily distinguish between the moved object and the intervener. This cumulative dissertation aims to provide empirical evidence on the validity of the RM approach in accounting for comprehension patterns during relative clause (RC) processing in German-speaking IWA. For that purpose, I conducted two studies including visual-world eye-tracking experiments embedded within an auditory referent-identification task to study the offline and online processing of German RCs. More specifically, target sentences were created to evaluate (a) whether IWA demonstrate a subject-object asymmetry, (b) whether dissimilarity in the number and/or the [+NP] features facilitates ORC processing, and (c) whether sentence processing in IWA benefits from greater degrees of featural distinctiveness. Furthermore, by comparing RCs disambiguated through case marking (at the relative pronoun or the following noun phrase) and number marking (inflection of the sentence-final verb), it was possible to consider the role of the relative position of the disambiguation point. The RM approach predicts that dissimilarity in case should not affect the occurrence of Minimality effects. However, the case cue to sentence interpretation appears earlier within RCs than the number cue, which may result in lower processing costs in case-disambiguated RCs compared to number-disambiguated RCs. In study I, target sentences varied with respect to word order (SRC vs. ORC) and dissimilarity in the [+NP] feature (lexically restricted determiner phrase vs. pronouns as embedded element). Moreover, by comparing the impact of these manipulations in case- and number-disambiguated RCs, the effect of dissimilarity in the number feature was explored. IWA demonstrated a subject-object asymmetry, indicating the occurrence of a Minimality effect in ORCs. However, dissimilarity neither in the number feature nor in the [+NP] feature alone facilitated ORC processing. Instead, only ORCs involving distinct specifications of both the number and the [+NP] features were well comprehended by IWA. In study II, only temporarily ambiguous ORCs disambiguated through case or number marking were investigated, while controlling for varying points of disambiguation. There was a slight processing advantage of case marking as cue to sentence interpretation as compared to number marking. Taken together, these findings suggest that the RM approach can only partially capture empirical data from German IWA. In processing complex syntactic structures, IWA are susceptible to the occurrence of the intervening subject in ORCs. The new findings reported in the thesis show that structural dissimilarity can modulate sentence comprehension in aphasia. Interestingly, IWA can override Minimality effects in ORCs and derive correct sentence meaning if the featural specifications of the constituents are maximally different, because they can more easily distinguish the moved object and the intervening subject given their reduced processing capacities. This dissertation presents new scientific knowledge that highlights how the syntactic theory of RM helps to uncover selective effects of morpho-syntactic features on sentence comprehension in aphasia, emphasizing the close link between assumptions from theoretical syntax and empirical research.}, language = {en} } @phdthesis{Seelig2021, author = {Seelig, Stefan}, title = {Parafoveal processing of lexical information during reading}, doi = {10.25932/publishup-50874}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-508743}, school = {Universit{\"a}t Potsdam}, pages = {xi, 113}, year = {2021}, abstract = {During sentence reading the eyes quickly jump from word to word to sample visual information with the high acuity of the fovea. Lexical properties of the currently fixated word are known to affect the duration of the fixation, reflecting an interaction of word processing with oculomotor planning. While low level properties of words in the parafovea can likewise affect the current fixation duration, results concerning the influence of lexical properties have been ambiguous (Drieghe, Rayner, \& Pollatsek, 2008; Kliegl, Nuthmann, \& Engbert, 2006). Experimental investigations of such lexical parafoveal-on-foveal effects using the boundary paradigm have instead shown, that lexical properties of parafoveal previews affect fixation durations on the upcoming target words (Risse \& Kliegl, 2014). However, the results were potentially confounded with effects of preview validity. The notion of parafoveal processing of lexical information challenges extant models of eye movements during reading. Models containing serial word processing assumptions have trouble explaining such effects, as they usually couple successful word processing to saccade planning, resulting in skipping of the parafoveal word. Although models with parallel word processing are less restricted, in the SWIFT model (Engbert, Longtin, \& Kliegl, 2002) only processing of the foveal word can directly influence the saccade latency. Here we combine the results of a boundary experiment (Chapter 2) with a predictive modeling approach using the SWIFT model, where we explore mechanisms of parafoveal inhibition in a simulation study (Chapter 4). We construct a likelihood function for the SWIFT model (Chapter 3) and utilize the experimental data in a Bayesian approach to parameter estimation (Chapter 3 \& 4). The experimental results show a substantial effect of parafoveal preview frequency on fixation durations on the target word, which can be clearly distinguished from the effect of preview validity. Using the eye movement data from the participants, we demonstrate the feasibility of the Bayesian approach even for a small set of estimated parameters, by comparing summary statistics of experimental and simulated data. Finally, we can show that the SWIFT model can account for the lexical preview effects, when a mechanism for parafoveal inhibition is added. The effects of preview validity were modeled best, when processing dependent saccade cancellation was added for invalid trials. In the simulation study only the control condition of the experiment was used for parameter estimation, allowing for cross validation. Simultaneously the number of free parameters was increased. High correlations of summary statistics demonstrate the capabilities of the parameter estimation approach. Taken together, the results advocate for a better integration of experimental data into computational modeling via parameter estimation.}, language = {en} } @phdthesis{Stone2020, author = {Stone, Kate}, title = {Predicting long-distance lexical content in German verb-particle constructions}, doi = {10.25932/publishup-47679}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-476798}, school = {Universit{\"a}t Potsdam}, year = {2020}, abstract = {A large body of research now supports the presence of both syntactic and lexical predictions in sentence processing. Lexical predictions, in particular, are considered to indicate a deep level of predictive processing that extends past the structural features of a necessary word (e.g. noun), right down to the phonological features of the lexical identity of a specific word (e.g. /kite/; DeLong et al., 2005). However, evidence for lexical predictions typically focuses on predictions in very local environments, such as the adjacent word or words (DeLong et al., 2005; Van Berkum et al., 2005; Wicha et al., 2004). Predictions in such local environments may be indistinguishable from lexical priming, which is transient and uncontrolled, and as such may prime lexical items that are not compatible with the context (e.g. Kukona et al., 2014). Predictive processing has been argued to be a controlled process, with top-down information guiding preactivation of plausible upcoming lexical items (Kuperberg \& Jaeger, 2016). One way to distinguish lexical priming from prediction is to demonstrate that preactivated lexical content can be maintained over longer distances. In this dissertation, separable German particle verbs are used to demonstrate that preactivation of lexical items can be maintained over multi-word distances. A self-paced reading time and an eye tracking experiment provide some support for the idea that particle preactivation triggered by a verb and its context can be observed by holding the sentence context constant and manipulating the predictabilty of the particle. Although evidence of an effect of particle predictability was only seen in eye tracking, this is consistent with previous evidence suggesting that predictive processing facilitates only some eye tracking measures to which the self-paced reading modality may not be sensitive (Staub, 2015; Rayner1998). Interestingly, manipulating the distance between the verb and the particle did not affect reading times, suggesting that the surprisal-predicted faster reading times at long distance may only occur when the additional distance is created by information that adds information about the lexical identity of a distant element (Levy, 2008; Grodner \& Gibson, 2005). Furthermore, the results provide support for models proposing that temporal decay is not major influence on word processing (Lewandowsky et al., 2009; Vasishth et al., 2019). In the third and fourth experiments, event-related potentials were used as a method for detecting specific lexical predictions. In the initial ERP experiment, we found some support for the presence of lexical predictions when the sentence context constrained the number of plausible particles to a single particle. This was suggested by a frontal post-N400 positivity (PNP) that was elicited when a lexical prediction had been violated, but not to violations when more than one particle had been plausible. The results of this study were highly consistent with previous research suggesting that the PNP might be a much sought-after ERP marker of prediction failure (DeLong et al., 2011; DeLong et al., 2014; Van Petten \& Luka, 2012; Thornhill \& Van Petten, 2012; Kuperberg et al., 2019). However, a second experiment in a larger sample experiment failed to replicate the effect, but did suggest the relationship of the PNP to predictive processing may not yet be fully understood. Evidence for long-distance lexical predictions was inconclusive. The conclusion drawn from the four experiments is that preactivation of the lexical entries of plausible upcoming particles did occur and was maintained over long distances. The facilitatory effect of this preactivation at the particle site therefore did not appear to be the result of transient lexical priming. However, the question of whether this preactivation can also lead to lexical predictions of a specific particle remains unanswered. Of particular interest to future research on predictive processing is further characterisation of the PNP. Implications for models of sentence processing may be the inclusion of long-distance lexical predictions, or the possibility that preactivation of lexical material can facilitate reading times and ERP amplitude without commitment to a specific lexical item.}, language = {en} } @phdthesis{Tamasi2016, author = {Tamasi, Katalin}, title = {Measuring children's sensitivity to phonological detail using eye tracking and pupillometry}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395954}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 165}, year = {2016}, abstract = {Infants' lexical processing is modulated by featural manipulations made to words, suggesting that early lexical representations are sufficiently specified to establish a match with the corresponding label. However, the precise degree of detail in early words requires further investigation due to equivocal findings. We studied this question by assessing children's sensitivity to the degree of featural manipulation (Chapters 2 and 3), and sensitivity to the featural makeup of homorganic and heterorganic consonant clusters (Chapter 4). Gradient sensitivity on the one hand and sensitivity to homorganicity on the other hand would suggest that lexical processing makes use of sub-phonemic information, which in turn would indicate that early words contain sub-phonemic detail. The studies presented in this thesis assess children's sensitivity to sub-phonemic detail using minimally demanding online paradigms suitable for infants: single-picture pupillometry and intermodal preferential looking. Such paradigms have the potential to uncover lexical knowledge that may be masked otherwise due to cognitive limitations. The study reported in Chapter 2 obtained a differential response in pupil dilation to the degree of featural manipulation, a result consistent with gradient sensitivity. The study reported in Chapter 3 obtained a differential response in proportion of looking time and pupil dilation to the degree of featural manipulation, a result again consistent with gradient sensitivity. The study reported in Chapter 4 obtained a differential response to the manipulation of homorganic and heterorganic consonant clusters, a result consistent with sensitivity to homorganicity. These results suggest that infants' lexical representations are not only specific, but also detailed to the extent that they contain sub-phonemic information.}, language = {en} } @phdthesis{Metzner2015, author = {Metzner, Paul-Philipp}, title = {Eye movements and brain responses in natural reading}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82806}, school = {Universit{\"a}t Potsdam}, pages = {xv, 160}, year = {2015}, abstract = {Intuitively, it is clear that neural processes and eye movements in reading are closely connected, but only few studies have investigated both signals simultaneously. Instead, the usual approach is to record them in separate experiments and to subsequently consolidate the results. However, studies using this approach have shown that it is feasible to coregister eye movements and EEG in natural reading and contributed greatly to the understanding of oculomotor processes in reading. The present thesis builds upon that work, assessing to what extent coregistration can be helpful for sentence processing research. In the first study, we explore how well coregistration is suited to study subtle effects common to psycholinguistic experiments by investigating the effect of distance on dependency resolution. The results demonstrate that researchers must improve the signal-to-noise ratio to uncover more subdued effects in coregistration. In the second study, we compare oscillatory responses in different presentation modes. Using robust effects from world knowledge violations, we show that the generation and retrieval of memory traces may differ between natural reading and word-by-word presentation. In the third study, we bridge the gap between our knowledge of behavioral and neural responses to integration difficulties in reading by analyzing the EEG in the context of regressive saccades. We find the P600, a neural indicator of recovery processes, when readers make a regressive saccade in response to integration difficulties. The results in the present thesis demonstrate that coregistration can be a useful tool for the study of sentence processing. However, they also show that it may not be suitable for some questions, especially if they involve subtle effects.}, language = {en} } @phdthesis{Poltrock2010, author = {Poltrock, Silvana}, title = {About the relation between implicit Theory of Mind \& the comprehension of complement sentences}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52293}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Previous studies on the relation between language and social cognition have shown that children's mastery of embedded sentential complements plays a causal role for the development of a Theory of Mind (ToM). Children start to succeed on complementation tasks in which they are required to report the content of an embedded clause in the second half of the fourth year. Traditional ToM tasks test the child's ability to predict that a person who is holding a false belief (FB) about a situation will act "falsely". In these task, children do not represent FBs until the age of 4 years. According the linguistic determinism hypothesis, only the unique syntax of complement sentences provides the format for representing FBs. However, experiments measuring children's looking behavior instead of their explicit predictions provided evidence that already 2-year olds possess an implicit ToM. This dissertation examined the question of whether there is an interrelation also between implicit ToM and the comprehension of complement sentences in typically developing German preschoolers. Two studies were conducted. In a correlational study (Study 1 ), 3-year-old children's performance on a traditional (explicit) FB task, on an implicit FB task and on language tasks measuring children's comprehension of tensed sentential complements were collected and tested for their interdependence. Eye-tracking methodology was used to assess implicit ToM by measuring participants' spontaneous anticipatory eye movements while they were watching FB movies. Two central findings emerged. First, predictive looking (implicit ToM) was not correlated with complement mastery, although both measures were associated with explicit FB task performance. This pattern of results suggests that explicit, but not implicit ToM is language dependent. Second, as a group, 3-year-olds did not display implicit FB understanding. That is, previous findings on a precocious reasoning ability could not be replicated. This indicates that the characteristics of predictive looking tasks play a role for the elicitation of implicit FB understanding as the current task was completely nonverbal and as complex as traditional FB tasks. Study 2 took a methodological approach by investigating whether children display an earlier comprehension of sentential complements when using the same means of measurement as used in experimental tasks tapping implicit ToM, namely anticipatory looking. Two experiments were conducted. 3-year-olds were confronted either with a complement sentence expressing the protagonist's FB (Exp. 1) or with a complex sentence expressing the protagonist's belief without giving any information about the truth/ falsity of the belief (Exp. 2). Afterwards, their expectations about the protagonist's future behavior were measured. Overall, implicit measures reveal no considerably earlier understanding of sentential complementation. Whereas 3-year-olds did not display a comprehension of complex sentences if these embedded a false proposition, children from 3;9 years on were proficient in processing complement sentences if the truth value of the embedded proposition could not be evaluated. This pattern of results suggests that (1) the linguistic expression of a person's FB does not elicit implicit FB understanding and that (2) the assessment of the purely syntactic understanding of complement sentences is affected by competing reality information. In conclusion, this dissertation found no evidence that the implicit ToM is related to the comprehension of sentential complementation. The findings suggest that implicit ToM might be based on nonlinguistic processes. Results are discussed in the light of recently proposed dual-process models that assume two cognitive mechanisms that account for different levels of ToM task performance.}, language = {en} }