@phdthesis{WijesinghaAhchige2022, author = {Wijesingha Ahchige, Micha}, title = {Canalization of plant metabolism and yield}, doi = {10.25932/publishup-54884}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548844}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 160}, year = {2022}, abstract = {Plant metabolism is the main process of converting assimilated carbon to different crucial compounds for plant growth and therefore crop yield, which makes it an important research topic. Although major advances in understanding genetic principles contributing to metabolism and yield have been made, little is known about the genetics responsible for trait variation or canalization although the concepts have been known for a long time. In light of a growing global population and progressing climate change, understanding canalization of metabolism and yield seems ever-more important to ensure food security. Our group has recently found canalization metabolite quantitative trait loci (cmQTL) for tomato fruit metabolism, showing that the concept of canalization applies on metabolism. In this work two approaches to investigate plant metabolic canalization and one approach to investigate yield canalization are presented. In the first project, primary and secondary metabolic data from Arabidopsis thaliana and Phaseolus vulgaris leaf material, obtained from plants grown under different conditions was used to calculate cross-environment coefficient of variations or fold-changes of metabolite levels per genotype and used as input for genome wide association studies. While primary metabolites have lower CV across conditions and show few and mostly weak associations to genomic regions, secondary metabolites have higher CV and show more, strong metabolite to genome associations. As candidate genes, both potential regulatory genes as well as metabolic genes, can be found, albeit most metabolic genes are rarely directly related to the target metabolites, suggesting a role for both potential regulatory mechanisms as well as metabolic network structure for canalization of metabolism. In the second project, candidate genes of the Solanum lycopersicum cmQTL mapping are selected and CRISPR/Cas9-mediated gene-edited tomato lines are created, to validate the genes role in canalization of metabolism. Obtained mutants appeared to either have strong aberrant developmental phenotypes or appear wild type-like. One phenotypically inconspicuous mutant of a pantothenate kinase, selected as candidate for malic acid canalization shows a significant increase of CV across different watering conditions. Another such mutant of a protein putatively involved in amino acid transport, selected as candidate for phenylalanine canalization shows a similar tendency to increased CV without statistical significance. This potential role of two genes involved in metabolism supports the hypothesis of structural relevance of metabolism for its own stability. In the third project, a mutant for a putative disulfide isomerase, important for thylakoid biogenesis, is characterized by a multi-omics approach. The mutant was characterized previously in a yield stability screening and showed a variegated leaf phenotype, ranging from green leaves with wild type levels of chlorophyll over differently patterned variegated to completely white leaves almost completely devoid of photosynthetic pigments. White mutant leaves show wild type transcript levels of photosystem assembly factors, with the exception of ELIP and DEG orthologs indicating a stagnation at an etioplast to chloroplast transition state. Green mutant leaves show an upregulation of these assembly factors, possibly acting as overcompensation for partially defective disulfide isomerase, which seems sufficient for proper chloroplast development as confirmed by a wild type-like proteome. Likely as a result of this phenotype, a general stress response, a shift to a sink-like tissue and abnormal thylakoid membranes, strongly alter the metabolic profile of white mutant leaves. As the severity and pattern of variegation varies from plant to plant and may be effected by external factors, the effect on yield instability, may be a cause of a decanalized ability to fully exploit the whole leaf surface area for photosynthetic activity.}, language = {en} } @phdthesis{Ivakov2011, author = {Ivakov, Alexander}, title = {Metabolic interactions in leaf development in Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59730}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Das Wachstum und {\"U}berleben von Pflanzen basiert auf der Photosynthese in den Bl{\"a}ttern. Diese beinhaltet die Aufnahme von Kohlenstoffdioxid aus der Atmosph{\"a}re und das simultane Einfangen von Lichtenergie zur Bildung organischer Molek{\"u}le. Diese werden nach dem Eintritt in den Metabolismus in viele andere Komponenten umgewandelt, welche die Grundlage f{\"u}r die Zunahme der Biomasse bilden. Bl{\"a}tter sind Organe, die auf die Fixierung von Kohlenstoffdioxid spezialisiert sind. Die Funktionen der Bl{\"a}tter beinhalten vor allem die Optimierung und Feinregulierung vieler Prozesse, um eine effektive Nutzung von Ressourcen und eine maximale Photosynthese zu gew{\"a}hrleisten. Es ist bekannt, dass sich die Morphologie der Bl{\"a}tter den Wachstumsbedingungen der Pflanze anpasst und eine wichtige Rolle bei der Optimierung der Photosynthese spielt. Trotzdem ist die Regulation dieser Art der Anpassung bisher nicht verstanden. Die allgemeine Zielsetzung dieser vorliegenden Arbeit ist das Verst{\"a}ndnis wie das Wachstum und die Morphologie der Bl{\"a}tter im Modellorganismus Arabidopsis thaliana reguliert werden. Besondere Aufmerksamkeit wurde hierbei der M{\"o}glichkeit geschenkt, dass es interne metabolische Signale in der Pflanze geben k{\"o}nnte, die das Wachstum und die Entwicklung von Bl{\"a}ttern beeinflussen. Um diese Fragestellung zu untersuchen, muss das Wachstum und die Entwicklung von Bl{\"a}ttern oberhalb des Levels des einzelnen Organs und im Kontext der gesamten Pflanze betrachtet werden, weil Bl{\"a}tter nicht eigenst{\"a}ndig wachsen, sondern von Ressourcen und regulatorischen Einfl{\"u}ssen der ganzen Pflanze abh{\"a}ngig sind. Aufgrund der Komplexit{\"a}t dieser Fragestellung wurden drei komplement{\"a}re Ans{\"a}tze durchgef{\"u}hrt. Im ersten und spezifischsten Ansatz wurde untersucht ob eine flussabw{\"a}rts liegende Komponente des Zucker-Signalwegs, Trehalose-6-Phosphat (Tre-6-P), das Blattwachstum und die Blattentwicklung beinflussen kann. Um diese Frage zu beantworten wurden transgene Arabidopsis-Linien mit einem gest{\"o}rten Gehalt von Tre-6-P durch die Expression von bakteriellen Proteinen die in dem metabolismus von trehalose beteiligt sind. Die Pflanzen-Linien wurden unter Standard-Bendingungen in Erde angebaut und ihr Metabolismus und ihre Blattmorphologie untersucht. Diese Experimente f{\"u}hrten auch zu einem unerwarteten Projekt hinsichtlich einer m{\"o}glichen Rolle von Tre-6-P in der Regulation der Stomata. In einem zweiten, allgemeineren Ansatz wurde untersucht, ob {\"A}nderungen im Zucker-Gehalt der Pflanzen die Morphogenese der Bl{\"a}tter als Antwort auf Licht beeinflussen. Dazu wurden eine Reihe von Mutanten, die im Zentralmetabolismus beeintr{\"a}chtigt sind, in derselben Lichtbedingung angezogen und bez{\"u}glich ihrer Blattmorphologie analysiert. In einem dritten noch allgemeineren Ansatz wurde die nat{\"u}rliche Variation von morphologischen Auspr{\"a}gungen der Bl{\"a}tter und Rosette anhand von wilden Arabidopsis {\"O}kotypen untersucht, um zu verstehen wie sich die Blattmorphologie auf die Blattfunktion und das gesamte Pflanzenwachstum auswirkt und wie unterschiedliche Eigenschaften miteinander verkn{\"u}pft sind. Das Verh{\"a}ltnis der Blattanzahl zum Gesamtwachstum der Pflanze und Blattgr{\"o}ße wurde gesondert weiter untersucht durch eine Normalisierung der Blattanzahl auf das Frischgewicht der Rosette, um den Parameter „leafing Intensity" abzusch{\"a}tzen. Leafing Intensity integrierte Blattanzahl, Blattgr{\"o}ße und gesamtes Rosettenwachstum in einer Reihe von Kompromiss-Interaktionen, die in einem Wachstumsvorteil resultieren, wenn Pflanzen weniger, aber gr{\"o}ßere Bl{\"a}tter pro Einheit Biomasse ausbilden. Dies f{\"u}hrte zu einem theoretischen Ansatz in dem ein einfaches allometrisch mathematisches Modell konstruiert wurde, um Blattanzahl, Blattgr{\"o}ße und Pflanzenwachstum im Kontext der gesamten Pflanze Arabidopsis zu verkn{\"u}pfen.}, language = {en} }