@misc{DoscheMicklerLoehmannsroebenetal.2007, author = {Dosche, Carsten and Mickler, Wulfhard and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Agenet, Nicolas and Vollhardt, K. Peter C.}, title = {Photoinduced electron transfer in [N]phenylenes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12463}, year = {2007}, abstract = {First studies of electron transfer in [N]phenylenes were performed in bimolecular quenching reactions of angular [3]- and triangular [4]phenylene with various electron acceptors. The relation between the quenching rate constants kq and the free energy change of the electron transfer (ΔG0CS ) could be described by the Rehm-Weller equation. From the experimental results, a reorganization energy λ of 0.7 eV was derived. Intramolecular electron transfer reactions were studied in an [N]phenylene bichomophore and a corresponding reference compound. Fluorescence lifetime and quantum yield of the bichromophor display a characteristic dependence on the solvent polarity, whereas the corresponding values of the reference compound remain constant. From the results, a nearly isoenergonic ΔG0CS can be determined. As the triplet quantum yield is nearly independent of the polarity, charge recombination leads to the population of the triplet state.}, language = {en} } @misc{DoscheLoehmannsroebenBieseretal.2002, author = {Dosche, Carsten and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Bieser, A. and Dosa, P. I. and Han, S. and Iwamoto, M. and Schleifenbaum, A. and Vollhardt, K. Peter C.}, title = {Photophysical properties of [N]phenylenes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-11936}, year = {2002}, abstract = {In the present study, photophysical properties of [N]phenylenes were studied by means of stationary and time-resolved absorption and fluorescence spectroscopy (in THF at room temperature). For biphenylene (1) and linear [3]phenylene (2a), internal conversion (IC) with quantum yields ΦIC > 0.99 is by far the dominant mechanism of S1 state deactivation. Angular [3]phenylene (3a), the zig-zag [4]- and [5]phenylenes (3b), (3c), and the triangular [4]phenylene (4) show fluorescence emission with fluorescence quantum yieds and lifetimes between ΦF = 0.07 for (3a) and 0.21 for (3c) and τF = 20 ns for (3a) and 81 ns for (4). Also, compounds (3) and (4) exhibit triplet formation upon photoexcitation with quantum yields as high as ΦISC = 0.45 for (3c). The strong differences in the fluorescence properties and in the triplet fromation efficiencies between (1) and (2a) on one hand and (3) and (4) on the other are related to the remarkable variation of the internal conversion (IC) rate constants kIC. A tentative classification of (1) and (2a) as "fast IC compounds", with kIC > 109 s-1, and of (3) and (4) as "slow IC compounds", with kIC ≈ 107 s-1, is suggested. This classification cannot simply be related to H{\"u}ckel's rule-type concepts of aromaticity, because the group of "fast IC compounds" consists of "antiaromatic" (1) and "aromatic" (2a), and the group of "slow IC compounds" consists of "antiaromatic" (3b), (4) and "aromatic" (3a), (3c). The IC in the [N]phenylenes is discussed within the framework of the so-called energy gap law established for non-radiative processes in benzenoid hydrocarbons.}, language = {en} }