@phdthesis{Markov2023, author = {Markov, Adrian}, title = {Acute effects of exercise order in concurrent training on immunological stress responses and measures of muscular fitness in youth athletes of both sexes}, doi = {10.25932/publishup-61851}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-618517}, school = {Universit{\"a}t Potsdam}, pages = {X, 81}, year = {2023}, abstract = {Background and aims: To succeed in competition, elite team and individual athletes often seek the development of both, high levels of muscle strength and power as well as cardiorespiratory endurance. In this context, concurrent training (CT) is a commonly applied and effective training approach. While being exposed to high training loads, youth athletes (≤ 18 years) are yet underrepresented in the scientific literature. Besides, immunological responses to CT have received little attention. Therefore, the aims of this work were to examine the acute (< 15min) and delayed (≥ 6 hours) effects of dif-ferent exercise order in CT on immunological stress responses, muscular fitness, metabolic response, and rating of perceived exertion (RPE) in highly trained youth male and female judo athletes. Methods: A total of twenty male and thirteen female participants, with an average age of 16 ± 1.8 years and 14.4 ± 2.1 years, respectively, were included in the study. They were randomly assigned to two CT sessions; power-endurance versus endurance-power (i.e., study 1), or strength-endurance versus endurance-strength (i.e., study 2). Markers of immune response (i.e., white-blood-cells, granulocytes, lymphocytes, mon-ocytes, and lymphocytes, granulocyte-lymphocyte-ratio, and systemic-inflammation-index), muscular fitness (i.e., counter-movement jump [CMJ]), metabolic responses (i.e., blood lactate, glucose), and RPE were collected at different time points (i.e., PRE12H, PRE, MID, POST, POST6H, POST22H). Results (study 1): There were significant time*order interactions for white-blood-cells, lymphocytes, granulocytes, monocytes, granulocyte-lymphocyte-ratio, and systemic-inflammation-index. The power-endurance order resulted in significantly larger PRE-to-POST increases in white-blood-cells, monocytes, and lymphocytes while the endur-ance-power order resulted in significantly larger PRE-to-POST increases in the granu-locyte-lymphocyte-ratio and systemic-inflammation-index. Likewise, significantly larger increases from PRE-to-POST6H in white-blood-cells and granulocytes were observed following the power-endurance order compared to endurance-power. All markers of immune response returned toward baseline values at POST22H. Moreover, there was a significant time*order interaction for blood glucose and lactate. Following the endur-ance-power order, blood lactate and glucose increased from PRE-to-MID but not from PRE-to-POST. Meanwhile, in the power-endurance order blood lactate and glucose increased from PRE-to-POST but not from PRE-to-MID. A significant time*order inter-action was observed for CMJ-force with larger PRE-to-POST decreases in the endur-ance-power order compared to power-endurance order. Further, CMJ-power showed larger PRE-to-MID performance decreases following the power-endurance order, com-pared to the endurance-power order. Regarding RPE, significant time*order interactions were noted with larger PRE-to-MID values following the endurance-power order and larger PRE-to-POST values following the power-endurance order. Results (study 2): There were significant time*order interactions for lymphocytes, monocytes, granulocyte-lymphocyte-ratio, and systemic-inflammation-index. The strength-endurance order resulted in significantly larger PRE-to-POST increases in lymphocytes while the endurance-strength order resulted in significantly larger PRE-to-POST increases in the granulocyte-lymphocyte-ratio and systemic-inflammation-index. All markers of the immune system returned toward baseline values at POST22H. Moreover, there was a significant time*order interaction for blood glucose and lactate. From PRE-to-MID, there was a significantly greater increase in blood lactate and glu-cose following the endurance-strength order compared to strength-endurance order. Meanwhile, from PRE-to-POST there was a significantly higher increase in blood glu-cose following the strength-endurance order compared to endurance-strength order. Regarding physical fitness, a significant time*order interaction was observed for CMJ-force and CMJ-power with larger PRE-to-MID increases following the endurance-strength order compared to the strength-endurance order. For RPE, significant time*order interactions were noted with larger PRE-to-MID values following the endur-ance-power order and larger PRE-to-POST values following the power-endurance or-der. Conclusions: The primary findings from both studies revealed order-dependent effects on immune responses. In male youth judo athletes, the results demonstrated greater immunological stress responses, both immediately (≤ 15 min) and delayed (≥ 6 hours), following the power-endurance order compared to the endurance-power order. For female youth judo athletes, the results indicated higher acute, but not delayed, order-dependent changes in immune responses following the strength-endurance order compared to the endurance-strength order. It is worth noting that in both studies, all markers of immune system response returned to baseline levels within 22 hours. This suggests that successful recovery from the exercise-induced immune stress response was achieved within 22 hours. Regarding metabolic responses, physical fitness, and perceived exertion, the findings from both studies indicated acute (≤ 15 minutes) alterations that were dependent on the exercise order. These alterations were primarily influ-enced by the endurance exercise component. Moreover, study 1 provided substantial evidence suggesting that internal load measures, such as immune markers, may differ from external load measures. This indicates a disparity between immunological, perceived, and physical responses following both concurrent training orders. Therefore, it is crucial for practitioners to acknowledge these differences and take them into consideration when designing training programs.}, language = {en} } @misc{ArntzMkaouerMarkovetal.2022, author = {Arntz, Fabian and Mkaouer, Bessem and Markov, Adrian and Schoenfeld, Brad and Moran, Jason and Ramirez-Campillo, Rodrigo and Behrens, Martin and Baumert, Philipp and Erskine, Robert M. and Hauser, Lukas and Chaabene, Helmi}, title = {Effect of Plyometric Jump Training on Skeletal Muscle Hypertrophy in Healthy Individuals: A Systematic Review With Multilevel Meta-Analysis}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-56316}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563165}, pages = {1 -- 17}, year = {2022}, abstract = {Objective: To examine the effect of plyometric jump training on skeletal muscle hypertrophy in healthy individuals. Methods: A systematic literature search was conducted in the databases PubMed, SPORTDiscus, Web of Science, and Cochrane Library up to September 2021. Results: Fifteen studies met the inclusion criteria. The main overall finding (44 effect sizes across 15 clusters median = 2, range = 1-15 effects per cluster) indicated that plyometric jump training had small to moderate effects [standardised mean difference (SMD) = 0.47 (95\% CIs = 0.23-0.71); p < 0.001] on skeletal muscle hypertrophy. Subgroup analyses for training experience revealed trivial to large effects in non-athletes [SMD = 0.55 (95\% CIs = 0.18-0.93); p = 0.007] and trivial to moderate effects in athletes [SMD = 0.33 (95\% CIs = 0.16-0.51); p = 0.001]. Regarding muscle groups, results showed moderate effects for the knee extensors [SMD = 0.72 (95\% CIs = 0.66-0.78), p < 0.001] and equivocal effects for the plantar flexors [SMD = 0.65 (95\% CIs = -0.25-1.55); p = 0.143]. As to the assessment methods of skeletal muscle hypertrophy, findings indicated trivial to small effects for prediction equations [SMD = 0.29 (95\% CIs = 0.16-0.42); p < 0.001] and moderate-to-large effects for ultrasound imaging [SMD = 0.74 (95\% CIs = 0.59-0.89); p < 0.001]. Meta-regression analysis indicated that the weekly session frequency moderates the effect of plyometric jump training on skeletal muscle hypertrophy, with a higher weekly session frequency inducing larger hypertrophic gains [β = 0.3233 (95\% CIs = 0.2041-0.4425); p < 0.001]. We found no clear evidence that age, sex, total training period, single session duration, or the number of jumps per week moderate the effect of plyometric jump training on skeletal muscle hypertrophy [β = -0.0133 to 0.0433 (95\% CIs = -0.0387 to 0.1215); p = 0.101-0.751]. Conclusion: Plyometric jump training can induce skeletal muscle hypertrophy, regardless of age and sex. There is evidence for relatively larger effects in non-athletes compared with athletes. Further, the weekly session frequency seems to moderate the effect of plyometric jump training on skeletal muscle hypertrophy, whereby more frequent weekly plyometric jump training sessions elicit larger hypertrophic adaptations.}, language = {en} }