@phdthesis{Werhahn2023, author = {Werhahn, Maria}, title = {Simulating galaxy evolution with cosmic rays: the multi-frequency view}, doi = {10.25932/publishup-57285}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572851}, school = {Universit{\"a}t Potsdam}, pages = {5, 220}, year = {2023}, abstract = {Cosmic rays (CRs) constitute an important component of the interstellar medium (ISM) of galaxies and are thought to play an essential role in governing their evolution. In particular, they are able to impact the dynamics of a galaxy by driving galactic outflows or heating the ISM and thereby affecting the efficiency of star-formation. Hence, in order to understand galaxy formation and evolution, we need to accurately model this non-thermal constituent of the ISM. But except in our local environment within the Milky Way, we do not have the ability to measure CRs directly in other galaxies. However, there are many ways to indirectly observe CRs via the radiation they emit due to their interaction with magnetic and interstellar radiation fields as well as with the ISM. In this work, I develop a numerical framework to calculate the spectral distribution of CRs in simulations of isolated galaxies where a steady-state between injection and cooling is assumed. Furthermore, I calculate the non-thermal emission processes arising from the modelled CR proton and electron spectra ranging from radio wavelengths up to the very high-energy gamma-ray regime. I apply this code to a number of high-resolution magneto-hydrodynamical (MHD) simulations of isolated galaxies, where CRs are included. This allows me to study their CR spectra and compare them to observations of the CR proton and electron spectra by the Voyager-1 satellite and the AMS-02 instrument in order to reveal the origin of the measured spectral features. Furthermore, I provide detailed emission maps, luminosities and spectra of the non-thermal emission from our simulated galaxies that range from dwarfs to Milk-Way analogues to starburst galaxies at different evolutionary stages. I successfully reproduce the observed relations between the radio and gamma-ray luminosities with the far-infrared (FIR) emission of star-forming (SF) galaxies, respectively, where the latter is a good tracer of the star-formation rate. I find that highly SF galaxies are close to the limit where their CR population would lose all of their energy due to the emission of radiation, whereas CRs tend to escape low SF galaxies more quickly. On top of that, I investigate the properties of CR transport that are needed in order to match the observed gamma-ray spectra. Furthermore, I uncover the underlying processes that enable the FIR-radio correlation (FRC) to be maintained even in starburst galaxies and find that thermal free-free-emission naturally explains the observed radio spectra in SF galaxies like M82 and NGC 253 thus solving the riddle of flat radio spectra that have been proposed to contradict the observed tight FRC. Lastly, I scrutinise the steady-state modelling of the CR proton component by investigating for the first time the influence of spectrally resolved CR transport in MHD simulations on the hadronic gamma-ray emission of SF galaxies revealing new insights into the observational signatures of CR transport both spectrally and spatially.}, language = {en} } @phdthesis{Neumann2020, author = {Neumann, Justus}, title = {Secular evolution in galaxies}, doi = {10.25932/publishup-48270}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-482701}, school = {Universit{\"a}t Potsdam}, pages = {viii, 97}, year = {2020}, abstract = {Galaxies are gravitationally bound systems of stars, gas, dust and - probably - dark matter. They are the building blocks of the Universe. The morphology of galaxies is diverse: some galaxies have structures such as spirals, bulges, bars, rings, lenses or inner disks, among others. The main processes that characterise galaxy evolution can be separated into fast violent events that dominated evolution at earlier times and slower processes, which constitute a phase called secular evolution, that became dominant at later times. Internal processes of secular evolution include the gradual rearrangement of matter and angular momentum, the build-up and dissolution of substructures or the feeding of supermassive black holes and their feedback. Galaxy bulges - bright central components in disc galaxies -, on one hand, are relics of galaxy formation and evolution. For instance, the presence of a classical bulge suggests a relatively violent history. In contrast, the presence of a disc-like bulge instead indicates the occurrence of secular evolution processes in the main disc. Galaxy bars - elongated central stellar structures -, on the other hand, are the engines of secular evolution. Studying internal properties of both bars and bulges is key to comprehending some of the processes through which secular evolution takes place. The main objectives of this thesis are (1) to improve the classification of bulges by combining photometric and spectroscopic approaches for a large sample of galaxies, (2) to quantify star formation in bars and verify dependencies on galaxy properties and (3) to analyse stellar populations in bars to aid in understanding the formation and evolution of bars. Integral field spectroscopy is fundamental to the work presented in this thesis, which consists of three different projects as part of three different galaxy surveys: the CALIFA survey, the CARS survey and the TIMER project. The first part of this thesis constitutes an investigation of the nature of bulges in disc galaxies. We analyse 45 galaxies from the integral-field spectroscopic survey CALIFA by performing 2D image decompositions, growth curve measurements and spectral template fitting to derive stellar kinematics from CALIFA data cubes. From the obtained results, we present a recipe to classify bulges that combines four different parameters from photometry and kinematics: The bulge Sersic index nb, the concentration index C20;50, the Kormendy relation and the inner slope of the radial velocity dispersion profile ∇σ. The results of the different approaches are in good agreement and allow a safe classification for approximately 95\% of the galaxies. We also find that our new 'inner' concentration index performs considerably better than the traditionally used C50;90 and, in combination with the Kormendy relation, provides a very robust indication of the physical nature of the bulge. In the second part, we study star formation within bars using VLT/MUSE observations for 16 nearby (0.01 < z < 0.06) barred active-galactic-nuclei (AGN)-host galaxies from the CARS survey. We derive spatially-resolved star formation rates (SFR) from Hα emission line fluxes and perform a detailed multi-component photometric decomposition on images derived from the data cubes. We find a clear separation into eight star-forming (SF) and eight non-SF bars, which we interpret as indication of a fast quenching process. We further report a correlation between the SFR in the bar and the shape of the bar surface brightness profile: only the flattest bars (nbar < 0.4) are SF. Both parameters are found to be uncorrelated with Hubble type. Additionally, owing to the high spatial resolution of the MUSE data cubes, for the first time, we are able to dissect the SFR within the bar and analyse trends parallel and perpendicular to the bar major axis. Star formation is 1.75 times stronger on the leading edge of a rotating bar than on the trailing edge and is radially decreasing. Moreover, from testing an AGN feeding scenario, we report that the SFR of the bar is uncorrelated with AGN luminosity. Lastly, we present a detailed analysis of star formation histories and chemical enrichment of stellar populations (SP) in galaxy bars. We use MUSE observations of nine very nearby barred galaxies from the TIMER project to derive spatially resolved maps of stellar ages and metallicities, [α/Fe] abundances, star formation histories, as well as Hα as tracer of star formation. Using these maps, we explore in detail variations of SP perpendicular to the bar major axes. We find observational evidence for a separation of SP, supposedly caused by an evolving bar. Specifically, intermediate-age stars (∼ 2-6 Gyr) get trapped on more elongated orbits forming a thinner bar, while old stars (> 8 Gyr) form a rounder and thicker bar. This evidence is further strengthened by very similar results obtained from barred galaxies in the cosmological zoom-in simulations from the Auriga project. In addition, we find imprints of typical star formation patterns in barred galaxies on the youngest populations (< 2 Gyr), which continuously become more dominant from the major axis towards the sides of the bar. The effect is slightly stronger on the leading side. Furthermore, we find that bars are on average more metal-rich and less α-enhanced than the inner parts of the discs that surrounds them. We interpret this result as an indication of a more prolonged or continuous formation of stars that shape the bar as compared to shorter formation episodes in the disc within the bar region.}, language = {en} } @phdthesis{Mitzkus2017, author = {Mitzkus, Martin}, title = {Spectroscopic surface brightness fluctuations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406327}, school = {Universit{\"a}t Potsdam}, pages = {ix, 89}, year = {2017}, abstract = {Galaxies evolve on cosmological timescales and to study this evolution we can either study the stellar populations, tracing the star formation and chemical enrichment, or the dynamics, tracing interactions and mergers of galaxies as well as accretion. In the last decades this field has become one of the most active research areas in modern astrophysics and especially the use of integral field spectrographs furthered our understanding. This work is based on data of NGC 5102 obtained with the panoramic integral field spectrograph MUSE. The data are analysed with two separate and complementary approaches: In the first part, standard methods are used to measure the kinematics and than model the gravitational potential using these exceptionally high-quality data. In the second part I develop the new method of surface brightness fluctuation spectroscopy and quantitatively explore its potential to investigate the bright evolved stellar population. Measuring the kinematics of NGC 5102 I discover that this low-luminosity S0 galaxy hosts two counter rotating discs. The more central stellar component co-rotates with the large amount of HI gas. Investigating the populations I find strong central age and metallicity gradients with a younger and more metal rich central population. The spectral resolution of MUSE does not allow to connect these population gradients with the two counter rotating discs. The kinematic measurements are modelled with Jeans anisotropic models to infer the gravitational potential of NGC 5102. Under the self-consistent mass-follows-light assumption none of the Jeans models is able to reproduce the observed kinematics. To my knowledge this is the strongest evidence evidence for a dark matter dominated system obtained with this approach so far. Including a Navarro, Frenk \& White dark matter halo immediately solves the discrepancies. A very robust result is the logarithmic slope of the total matter density. For this low-mass galaxy I find a value of -1.75 +- 0.04, shallower than an isothermal halo and even shallower than published values for more massive galaxies. This confirms a tentative relation between total mass slope and stellar mass of galaxies. The Surface Brightness Fluctuation (SBF) method is a well established distance measure, but due to its sensitive to bright stars also used to study evolved stars in unresolved stellar populations. The wide-field spectrograph MUSE offers the possibility to apply this technique for the first time to spectroscopic data. In this thesis I develop the spectroscopic SBF technique and measure the first SBF spectrum of any galaxy. I discuss the challenges for measuring SBF spectra that rise due to the complexity of integral field spectrographs compared to imaging instruments. Since decades, stellar population models indicate that SBFs in intermediate-to-old stellar systems are dominated by red giant branch and asymptotic giant branch stars. Especially the later carry significant model uncertainties, making these stars a scientifically interesting target. Comparing the NGC 5102 SBF spectrum with stellar spectra I show for the first time that M-type giants cause the fluctuations. Stellar evolution models suggest that also carbon rich thermally pulsating asymptotic giant branch stars should leave a detectable signal in the SBF spectrum. I cannot detect a significant contribution from these stars in the NGC 5102 SBF spectrum. I have written a stellar population synthesis tool that predicts for the first time SBF spectra. I compute two sets of population models: based on observed and on theoretical stellar spectra. In comparing the two models I find that the models based on observed spectra predict weaker molecular features. The comparison with the NGC 5102 spectrum reveals that these models are in better agreement with the data.}, language = {en} } @phdthesis{Herenz2016, author = {Herenz, Edmund Christian}, title = {Detecting and understanding extragalactic Lyman α emission using 3D spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102341}, school = {Universit{\"a}t Potsdam}, pages = {175}, year = {2016}, abstract = {In this thesis we use integral-field spectroscopy to detect and understand of Lyman α (Lyα) emission from high-redshift galaxies. Intrinsically the Lyα emission at λ = 1216 {\AA} is the strongest recombination line from galaxies. It arises from the 2p → 1s transition in hydrogen. In star-forming galaxies the line is powered by ionisation of the interstellar gas by hot O- and B- stars. Galaxies with star-formation rates of 1 - 10 Msol/year are expected to have Lyα luminosities of 42 dex - 43 dex (erg/s), corresponding to fluxes ~ -17 dex - -18 dex (erg/s/cm²) at redshifts z~3, where Lyα is easily accessible with ground-based telescopes. However, star-forming galaxies do not show these expected Lyα fluxes. Primarily this is a consequence of the high-absorption cross-section of neutral hydrogen for Lyα photons σ ~ -14 dex (cm²). Therefore, in typical interstellar environments Lyα photons have to undergo a complex radiative transfer. The exact conditions under which Lyα photons can escape a galaxy are poorly understood. Here we present results from three observational projects. In Chapter 2, we show integral field spectroscopic observations of 14 nearby star-forming galaxies in Balmer α radiation (Hα, λ = 6562.8 {\AA}). These observations were obtained with the Potsdam Multi Aperture Spectrophotometer at the Calar-Alto 3.5m Telescope}. Hα directly traces the intrinsic Lyα radiation field. We present Hα velocity fields and velocity dispersion maps spatially registered onto Hubble Space Telescope Lyα and Hα images. From our observations, we conjecture a causal connection between spatially resolved Hα kinematics and Lyα photometry for individual galaxies. Statistically, we find that dispersion-dominated galaxies are more likely to emit Lyα photons than galaxies where ordered gas-motions dominate. This result indicates that turbulence in actively star-forming systems favours an escape of Lyα radiation. Not only massive stars can power Lyα radiation, but also non-thermal emission from an accreting super-massive black hole in the galaxy centre. If a galaxy harbours such an active galactic nucleus, the rate of hydrogen-ionising photons can be more than 1000 times higher than that of a typical star-forming galaxy. This radiation can potentially ionise large regions well outside the main stellar body of galaxies. Therefore, it is expected that the neutral hydrogen from these circum-galactic regions shines fluorescently in Lyα. Circum-galactic gas plays a crucial role in galaxy formation. It may act as a reservoir for fuelling star formation, and it is also subject to feedback processes that expel galactic material. If Lyα emission from this circum-galactic medium (CGM) was detected, these important processes could be studied in-situ around high-z galaxies. In Chapter 3, we show observations of five radio-quiet quasars with PMAS to search for possible extended CGM emission in the Lyα line. However, in four of the five objects, we find no significant traces of this emission. In the fifth object, there is evidence for a weak and spatially quite compact Lyα excess at several kpc outside the nucleus. The faintness of these structures is consistent with the idea that radio-quiet quasars typically reside in dark matter haloes of modest masses. While we were not able to detect Lyα CGM emission, our upper limits provide constraints for the new generation of IFS instruments at 8--10m class telescopes. The Multi Unit Spectroscopic Explorer (MUSE) at ESOs Very Large Telescopeis such an unique instrument. One of the main motivating drivers in its construction was the use as a survey instrument for Lyα emitting galaxies at high-z. Currently, we are conducting such a survey that will cover a total area of ~100 square arcminutes with 1 hour exposures for each 1 square arcminute MUSE pointing. As a first result from this survey we present in Chapter 5 a catalogue of 831 emission-line selected galaxies from a 22.2 square arcminute region in the Chandra Deep Field South. In order to construct the catalogue, we developed and implemented a novel source detection algorithm -- LSDCat -- based on matched filtering for line emission in 3D spectroscopic datasets (Chapter 4). Our catalogue contains 237 Lyα emitting galaxies in the redshift range 3 ≲ z ≲ 6. Only four of those previously had spectroscopic redshifts in the literature. We conclude this thesis with an outlook on the construction of a Lyα luminosity function based on this unique sample (Chapter 6).}, language = {en} } @phdthesis{Herenz2014, author = {Herenz, Peter}, title = {A study of the absorption characteristics of gaseous galaxy halos in the local Universe}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70513}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Today, it is well known that galaxies like the Milky Way consist not only of stars but also of gas and dust. The galactic halo, a sphere of gas that surrounds the stellar disk of a galaxy, is especially interesting. It provides a wealth of information about in and outflowing gaseous material towards and away from galaxies and their hierarchical evolution. For the Milky Way, the so-called high-velocity clouds (HVCs), fast moving neutral gas complexes in the halo that can be traced by absorption-line measurements, are believed to play a crucial role in the overall matter cycle in our Galaxy. Over the last decades, the properties of these halo structures and their connection to the local circumgalactic and intergalactic medium (CGM and IGM, respectively) have been investigated in great detail by many different groups. So far it remains unclear, however, to what extent the results of these studies can be transferred to other galaxies in the local Universe. In this thesis, we study the absorption properties of Galactic HVCs and compare the HVC absorption characteristics with those of intervening QSO absorption-line systems at low redshift. The goal of this project is to improve our understanding of the spatial extent and physical conditions of gaseous galaxy halos in the local Universe. In the first part of the thesis we use HST /STIS ultraviolet spectra of more than 40 extragalactic background sources to statistically analyze the absorption properties of the HVCs in the Galactic halo. We determine fundamental absorption line parameters including covering fractions of different weakly/intermediately/highly ionized metals with a particular focus on SiII and MgII. Due to the similarity in the ionization properties of SiII and MgII, we are able to estimate the contribution of HVC-like halo structures to the cross section of intervening strong MgII absorbers at z = 0. Our study implies that only the most massive HVCs would be regarded as strong MgII absorbers, if the Milky Way halo would be seen as a QSO absorption line system from an exterior vantage point. Combining the observed absorption-cross section of Galactic HVCs with the well-known number density of intervening strong MgII absorbers at z = 0, we conclude that the contribution of infalling gas clouds (i.e., HVC analogs) in the halos of Milky Way-type galaxies to the cross section of strong MgII absorbers is 34\%. This result indicates that only about one third of the strong MgII absorption can be associated with HVC analogs around other galaxies, while the majority of the strong MgII systems possibly is related to galaxy outflows and winds. The second part of this thesis focuses on the properties of intervening metal absorbers at low redshift. The analysis of the frequency and physical conditions of intervening metal systems in QSO spectra and their relation to nearby galaxies offers new insights into the typical conditions of gaseous galaxy halos. One major aspect in our study was to regard intervening metal systems as possible HVC analogs. We perform a detailed analysis of absorption line properties and line statistics for 57 metal absorbers along 78 QSO sightlines using newly-obtained ultraviolet spectra obtained with HST /COS. We find clear evidence for bimodal distribution in the HI column density in the absorbers, a trend that we interpret as sign for two different classes of absorption systems (with HVC analogs at the high-column density end). With the help of the strong transitions of SiII λ1260, SiIII λ1206, and CIII λ977 we have set up Cloudy photoionization models to estimate the local ionization conditions, gas densities, and metallicities. We find that the intervening absorption systems studied by us have, on average, similar physical conditions as Galactic HVC absorbers, providing evidence that many of them represent HVC analogs in the vicinity of other galaxies. We therefore determine typical halo sizes for SiII, SiIII, and CIII for L = 0.01L∗ and L = 0.05L∗ galaxies. Based on the covering fractions of the different ions in the Galactic halo, we find that, for example, the typical halo size for SiIII is ∼ 160 kpc for L = 0.05L∗ galaxies. We test the plausibility of this result by searching for known galaxies close to the QSO sightlines and at similar redshifts as the absorbers. We find that more than 34\% of the measured SiIII absorbers have galaxies associated with them, with the majority of the absorbers indeed being at impact parameters ρ ≤160 kpc.}, language = {en} } @phdthesis{Husemann2011, author = {Husemann, Bernd}, title = {The AGN-host galaxy connection : new insights from the extended ionised gas}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-55556}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Active Galactic Nuclei (AGN) are powered by gas accretion onto supermassive Black Holes (BH). The luminosity of AGN can exceed the integrated luminosity of their host galaxies by orders of magnitude, which are then classified as Quasi-Stellar Objects (QSOs). Some mechanisms are needed to trigger the nuclear activity in galaxies and to feed the nuclei with gas. Among several possibilities, such as gravitational interactions, bar instabilities, and smooth gas accretion from the environment, the dominant process has yet to be identified. Feedback from AGN may be important an important ingredient of the evolution of galaxies. However, the details of this coupling between AGN and their host galaxies remain unclear. In this work we aim to investigate the connection between the AGN and their host galaxies by studying the properties of the extendend ionised gas around AGN. Our study is based on observations of ~50 luminous, low-redshift (z<0.3) QSOs using the novel technique of integral field spectroscopy that combines imaging and spectroscopy. After spatially separating the emission of AGN-ionised gas from HII regions, ionised solely by recently formed massive stars, we demonstrate that the specific star formation rates in several disc-dominated AGN hosts are consistent with those of normal star forming galaxies, while others display no detectable star formation activity. Whether the star formation has been actively suppressed in those particular host galaxies by the AGN, or their gas content is intrinsically low, remains an open question. By studying the kinematics of the ionised gas, we find evidence for non-gravitational motions and outflows on kpc scales only in a few objects. The gas kinematics in the majority of objects however indicate a gravitational origin. It suggests that the importance of AGN feedback may have been overrated in theoretical works, at least at low redshifts. The [OIII] line is the strongest optical emission line for AGN-ionised gas, which can be extended over several kpc scales, usually called the Narrow-Line Region (NLR). We perform a systematic investigation of the NLR size and determine a NLR size-luminosity relation that is consistent with the scenario of a constant ionisation parameter throughout the NLR. We show that previous narrow-band imaging with the Hubble Space Telescope underestimated the NLR size by a factor of >2 and that the continuum AGN luminosity is better correlated with the NLR size than the [OIII] luminosity. These affects may account for the different NLR size-luminosity relations reported in previous studies. On the other hand, we do not detect extended NLRs around all QSOs, and demonstrate that the detection of extended NLRs goes along with radio emission. We employ emission line ratios as a diagnostic for the abundance of heavy elements in the gas, i.e. its metallicity, and find that the radial metallicity gradients are always flatter than in inactive disc-dominated galaxies. This can be interpreted as evidence for radial gas flows from the outskirts of these galaxies to the nucleus. Recent or ongoing galaxy interactions are likely responsible for this effect and may turn out to be a common prerequisite for QSO activity. The metallicity of bulge-dominated hosts are systematically lower than their disc-dominated counterparts, which we interpret as evidence for minor mergers, supported by our detailed study of the bulge-dominated host of the luminous QSO HE 1029-1401, or smooth gas accretion from the environment. In this line another new discovery is that HE 2158-0107 at z=0.218 is the most metal poor luminous QSO ever observed. Together with a large (30kpc) extended structure of low metallicity ionised gas, we propose smooth cold gas accretion as the most likely scenario. Theoretical studies suggested that this process is much more important at earlier epochs of the universe, so that HE 2158-0107 might be an ideal laboratory to study this mechanism of galaxy and BH growth at low redshift more detailed in the furture.}, language = {en} } @phdthesis{Gressel2008, author = {Gressel, Oliver}, title = {Supernova-driven turbulence and magnetic field amplification in disk galaxies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29094}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Supernovae are known to be the dominant energy source for driving turbulence in the interstellar medium. Yet, their effect on magnetic field amplification in spiral galaxies is still poorly understood. Analytical models based on the uncorrelated-ensemble approach predicted that any created field will be expelled from the disk before a significant amplification can occur. By means of direct simulations of supernova-driven turbulence, we demonstrate that this is not the case. Accounting for vertical stratification and galactic differential rotation, we find an exponential amplification of the mean field on timescales of 100Myr. The self-consistent numerical verification of such a "fast dynamo" is highly beneficial in explaining the observed strong magnetic fields in young galaxies. We, furthermore, highlight the importance of rotation in the generation of helicity by showing that a similar mechanism based on Cartesian shear does not lead to a sustained amplification of the mean magnetic field. This finding impressively confirms the classical picture of a dynamo based on cyclonic turbulence.}, language = {en} } @phdthesis{Klessen2004, author = {Klessen, Ralf S.}, title = {The relation between interstellar turbulence and star formation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001118}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Eine der zentralen Fragestellungen der modernen Astrophysik ist es, unser Verst{\"a}ndnis fuer die Bildung von Sternen und Sternhaufen in unserer Milchstrasse zu erweitern und zu vertiefen. Sterne entstehen in interstellaren Wolken aus molekularem Wasserstoffgas. In den vergangenen zwanzig bis dreißig Jahren ging man davon aus, dass der Prozess der Sternentstehung vor allem durch das Wechselspiel von gravitativer Anziehung und magnetischer Abstossung bestimmt ist. Neuere Erkenntnisse, sowohl von Seiten der Beobachtung als auch der Theorie, deuten darauf hin, dass nicht Magnetfelder, sondern {\"U}berschallturbulenz die Bildung von Sternen in galaktischen Molek{\"u}lwolken bestimmt. Diese Arbeit fasst diese neuen {\"U}berlegungen zusammen, erweitert sie und formuliert eine neue Theorie der Sternentstehung die auf dem komplexen Wechselspiel von Eigengravitation des Wolkengases und der darin beobachteten {\"U}berschallturbulenz basiert. Die kinetische Energie des turbulenten Geschwindigkeitsfeldes ist typischerweise ausreichend, um interstellare Gaswolken auf großen Skalen gegen gravitative Kontraktion zu stabilisieren. Auf kleinen Skalen jedoch f{\"u}hrt diese Turbulenz zu starken Dichtefluktuationen, wobei einige davon die lokale kritische Masse und Dichte f{\"u}r gravitativen Kollaps {\"u}berschreiten koennen. Diese Regionen schockkomprimierten Gases sind es nun, aus denen sich die Sterne der Milchstrasse bilden. Die Effizienz und die Zeitskala der Sternentstehung h{\"a}ngt somit unmittelbar von den Eigenschaften der Turbulenz in interstellaren Gaswolken ab. Sterne bilden sich langsam und in Isolation, wenn der Widerstand des turbulenten Geschwindigkeitsfeldes gegen gravitativen Kollaps sehr stark ist. {\"U}berwiegt hingegen der Einfluss der Eigengravitation, dann bilden sich Sternen in dichten Gruppen oder Haufen sehr rasch und mit grosser Effizienz. Die Vorhersagungen dieser Theorie werden sowohl auf Skalen einzelner Sternentstehungsgebiete als auch auf Skalen der Scheibe unserer Milchstrasse als ganzes untersucht. Es zu erwarten, dass protostellare Kerne, d.h. die direkten Vorl{\"a}ufer von Sternen oder Doppelsternsystemen, eine hochgradig dynamische Zeitentwicklung aufweisen, und keineswegs quasi-statische Objekte sind, wie es in der Theorie der magnetisch moderierten Sternentstehung vorausgesetzt wird. So muss etwa die Massenanwachsrate junger Sterne starken zeitlichen Schwankungen unterworfen sein, was wiederum wichtige Konsequenzen f{\"u}r die statistische Verteilung der resultierenden Sternmassen hat. Auch auf galaktischen Skalen scheint die Wechselwirkung von Turbulenz und Gravitation maßgeblich. Der Prozess wird hier allerdings noch zus{\"a}tzlich moduliert durch chemische Prozesse, die die Heizung und K{\"u}hlung des Gases bestimmen, und durch die differenzielle Rotation der galaktischen Scheibe. Als wichtigster Mechanismus zur Erzeugung der interstellaren Turbulenz l{\"a}sst sich die {\"U}berlagerung vieler Supernova-Explosionen identifizieren, die das Sterben massiver Sterne begleiten und große Mengen an Energie und Impuls freisetzen. Insgesamt unterst{\"u}tzen die Beobachtungsbefunde auf allen Skalen das Bild der turbulenten, dynamischen Sternentstehung, so wie es in dieser Arbeit gezeichnet wird.}, language = {en} }