@phdthesis{Strollo2010, author = {Strollo, Angelo}, title = {Development of techniques for earthquake microzonation studies in different urban environment}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53807}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {The proliferation of megacities in many developing countries, and their location in areas where they are exposed to a high risk from large earthquakes, coupled with a lack of preparation, demonstrates the requirement for improved capabilities in hazard assessment, as well as the rapid adjustment and development of land-use planning. In particular, within the context of seismic hazard assessment, the evaluation of local site effects and their influence on the spatial distribution of ground shaking generated by an earthquake plays an important role. It follows that the carrying out of earthquake microzonation studies, which aim at identify areas within the urban environment that are expected to respond in a similar way to a seismic event, are essential to the reliable risk assessment of large urban areas. Considering the rate at which many large towns in developing countries that are prone to large earthquakes are growing, their seismic microzonation has become mandatory. Such activities are challenging and techniques suitable for identifying site effects within such contexts are needed. In this dissertation, I develop techniques for investigating large-scale urban environments that aim at being non-invasive, cost-effective and quickly deployable. These peculiarities allow one to investigate large areas over a relative short time frame, with a spatial sampling resolution sufficient to provide reliable microzonation. Although there is a negative trade-off between the completeness of available information and extent of the investigated area, I attempt to mitigate this limitation by combining two, what I term layers, of information: in the first layer, the site effects at a few calibration points are well constrained by analyzing earthquake data or using other geophysical information (e.g., shear-wave velocity profiles); in the second layer, the site effects over a larger areal coverage are estimated by means of single-station noise measurements. The microzonation is performed in terms of problem-dependent quantities, by considering a proxy suitable to link information from the first layer to the second one. In order to define the microzonation approach proposed in this work, different methods for estimating site effects have been combined and tested in Potenza (Italy), where a considerable amount of data was available. In particular, the horizontal-to-vertical spectral ratio computed for seismic noise recorded at different sites has been used as a proxy to combine the two levels of information together and to create a microzonation map in terms of spectral intensity ratio (SIR). In the next step, I applied this two-layer approach to Istanbul (Turkey) and Bishkek (Kyrgyzstan). A similar hybrid approach, i.e., combining earthquake and noise data, has been used for the microzonation of these two different urban environments. For both cities, after having calibrated the fundamental frequencies of resonance estimated from seismic noise with those obtained by analysing earthquakes (first layer), a fundamental frequency map has been computed using the noise measurements carried out within the town (second layer). By applying this new approach, maps of the fundamental frequency of resonance for Istanbul and Bishkek have been published for the first time. In parallel, a microzonation map in terms of SIR has been incorporated into a risk scenario for the Potenza test site by means of a dedicated regression between spectral intensity (SI) and macroseismic intensity (EMS). The scenario study confirms the importance of site effects within the risk chain. In fact, their introduction into the scenario led to an increase of about 50\% in estimates of the number of buildings that would be partially or totally collapsed. Last, but not least, considering that the approach developed and applied in this work is based on measurements of seismic noise, their reliability has been assessed. A theoretical model describing the self-noise curves of different instruments usually adopted in microzonation studies (e.g., those used in Potenza, Istanbul and Bishkek) have been considered and compared with empirical data recorded in Cologne (Germany) and Gubbio (Italy). The results show that, depending on the geological and environmental conditions, the instrumental noise could severely bias the results obtained by recording and analysing ambient noise. Therefore, in this work I also provide some guidelines for measuring seismic noise.}, language = {en} } @misc{RungeGrosse2019, author = {Runge, Alexandra and Grosse, Guido}, title = {Comparing Spectral Characteristics of Landsat-8 and Sentinel-2 Same-Day Data for Arctic-Boreal Regions}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {767}, issn = {1866-8372}, doi = {10.25932/publishup-43866}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438660}, pages = {29}, year = {2019}, abstract = {The Arctic-Boreal regions experience strong changes of air temperature and precipitation regimes, which affect the thermal state of the permafrost. This results in widespread permafrost-thaw disturbances, some unfolding slowly and over long periods, others occurring rapidly and abruptly. Despite optical remote sensing offering a variety of techniques to assess and monitor landscape changes, a persistent cloud cover decreases the amount of usable images considerably. However, combining data from multiple platforms promises to increase the number of images drastically. We therefore assess the comparability of Landsat-8 and Sentinel-2 imagery and the possibility to use both Landsat and Sentinel-2 images together in time series analyses, achieving a temporally-dense data coverage in Arctic-Boreal regions. We determined overlapping same-day acquisitions of Landsat-8 and Sentinel-2 images for three representative study sites in Eastern Siberia. We then compared the Landsat-8 and Sentinel-2 pixel-pairs, downscaled to 60 m, of corresponding bands and derived the ordinary least squares regression for every band combination. The acquired coefficients were used for spectral bandpass adjustment between the two sensors. The spectral band comparisons showed an overall good fit between Landsat-8 and Sentinel-2 images already. The ordinary least squares regression analyses underline the generally good spectral fit with intercept values between 0.0031 and 0.056 and slope values between 0.531 and 0.877. A spectral comparison after spectral bandpass adjustment of Sentinel-2 values to Landsat-8 shows a nearly perfect alignment between the same-day images. The spectral band adjustment succeeds in adjusting Sentinel-2 spectral values to Landsat-8 very well in Eastern Siberian Arctic-Boreal landscapes. After spectral adjustment, Landsat and Sentinel-2 data can be used to create temporally-dense time series and be applied to assess permafrost landscape changes in Eastern Siberia. Remaining differences between the sensors can be attributed to several factors including heterogeneous terrain, poor cloud and cloud shadow masking, and mixed pixels.}, language = {en} } @misc{DietzeKrautblatterIllienetal.2021, author = {Dietze, Michael and Krautblatter, Michael and Illien, Luc and Hovius, Niels}, title = {Seismic constraints on rock damaging related to a failing mountain peak}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-56878}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-568787}, pages = {15}, year = {2021}, abstract = {Large rock slope failures play a pivotal role in long-term landscape evolution and are a major concern in land use planning and hazard aspects. While the failure phase and the time immediately prior to failure are increasingly well studied, the nature of the preparation phase remains enigmatic. This knowledge gap is due, to a large degree, to difficulties associated with instrumenting high mountain terrain and the local nature of classic monitoring methods, which does not allow integral observation of large rock volumes. Here, we analyse data from a small network of up to seven seismic sensors installed during July-October 2018 (with 43 days of data loss) at the summit of the Hochvogel, a 2592 m high Alpine peak. We develop proxy time series indicative of cyclic and progressive changes of the summit. Modal analysis, horizontal-to-vertical spectral ratio data and end-member modelling analysis reveal diurnal cycles of increasing and decreasing coupling stiffness of a 260,000 m(3) large, instable rock volume, due to thermal forcing. Relative seismic wave velocity changes also indicate diurnal accumulation and release of stress within the rock mass. At longer time scales, there is a systematic superimposed pattern of stress increased over multiple days and episodic stress release within a few days, expressed in an increased emission of short seismic pulses indicative of rock cracking. Our data provide essential first order information on the development of large-scale slope instabilities towards catastrophic failure. (c) 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley \& Sons Ltd}, language = {en} }