@phdthesis{GilMerinoRubio2003, author = {Gil-Merino Rubio, Rodrigo}, title = {Cosmology through gravitational lenses}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001030}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {In dieser Dissertation nutze ich den Gravitationslinseneffekt, um eine Reihe von kosmologischen Fragen zu untersuchen. Der Laufzeitunterschied des Gravitationslinsensystems HE1104-1805 wurde mit unterschiedlichen Methoden bestimmt. Zwischen den beiden Komponenten erhalte ich einen Unterschied von Delta_t(A-B) = -310 +-20 Tagen (2 sigma Konfidenzintervall). Außerdem nutze ich eine dreij{\"a}hrige Beobachtungskampagne, um den Doppelquasar Q0957+561 zu untersuchen. Die beobachteten Fluktuationen in den Differenzlichtkurven lassen sich durch Rauschen erkl{\"a}ren, ein Mikrogravitationslinseneffekt wird zur Erkl{\"a}rung nicht ben{\"o}tigt. Am Vierfachquasar Q2237+0305 untersuchte ich den Mikrogravitationslinseneffekt anhand der Daten der GLITP-Kollaboration (Okt. 1999-Feb. 2000). Durch die Abwesenheit eines starken Mikrogravitationslinsensignals konnte ich eine obere Grenze von v=600 km/s f f{\"u}r die effektive Transversalgeschwindigkeit der Linsengalaxie bestimmen (unter der Annahme von Mikrolinsen mit 0.1 Sonnenmassen). Im zweiten Teil der Arbeit untersuchte ich die Verteilung der Dunklen Materie in Galaxienhaufen. F{\"u}r den Galaxienhaufen Cl0024+1654 erhalte ich ein Masse-Leuchtkraft-Verh{\"a}ltnis von M/L = 200 M_sun/L_sun (innerhalb eines Radius von 3 Bogenminuten). Im Galaxienhaufen RBS380 finde ich eine relativ geringe R{\"o}ntgenleuchtkraft von L =2*10^(44) erg/s, obwohl im optischen eine große Anzahl von Galaxien gefunden wurde.}, language = {en} } @phdthesis{Kubas2005, author = {Kubas, Daniel}, title = {Applications of Galactic Microlensing}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5179}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Subject of this work is the study of applications of the Galactic Microlensing effect, where the light of a distant star (source) is bend according to Einstein's theory of gravity by the gravitational field of intervening compact mass objects (lenses), creating multiple (however not resolvable) images of the source. Relative motion of source, observer and lens leads to a variation of deflection/magnification and thus to a time dependant observable brightness change (lightcurve), a so-called microlensing event, lasting weeks to months. The focus lies on the modeling of binary-lens events, which provide a unique tool to fully characterize the lens-source system and to detect extra-solar planets around the lens star. Making use of the ability of genetic algorithms to efficiently explore large and intricate parameter spaces in the quest for the global best solution, a modeling software (Tango) for binary lenses is developed, presented and applied to data sets from the PLANET microlensing campaign. For the event OGLE-2002-BLG-069 the 2nd ever lens mass measurement has been achieved, leading to a scenario, where a G5III Bulge giant at 9.4 kpc is lensed by an M-dwarf binary with total mass of M=0.51 solar masses at distance 2.9 kpc. Furthermore a method is presented to use the absence of planetary lightcurve signatures to constrain the abundance of extra-solar planets.}, subject = {Planeten}, language = {en} } @phdthesis{Pfrang2023, author = {Pfrang, Konstantin Johannes}, title = {Search for light primordial black holes with VERITAS using gamma γ-ray and optical observations}, doi = {10.25932/publishup-58726}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587266}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2023}, abstract = {The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is an array of four imaging atmospheric Cherenkov telescopes (IACTs). VERITAS is sensitive to very-high-energy gamma-rays in the range of 100 GeV to >30 TeV. Hypothesized primordial black holes (PBHs) are attractive targets for IACTs. If they exist, their potential cosmological impact reaches beyond the candidacy for constituents of dark matter. The sublunar mass window is the largest unconstrained range of PBH masses. This thesis aims to develop novel concepts searching for light PBHs with VERITAS. PBHs below the sublunar window lose mass due to Hawking radiation. They would evaporate at the end of their lifetime, leading to a short burst of gamma-rays. If PBHs formed at about 10^15 g, the evaporation would occur nowadays. Detecting these signals might not only confirm the existence of PBHs but also prove the theory of Hawking radiation. This thesis probes archival VERITAS data recorded between 2012 and 2021 for possible PBH signals. This work presents a new automatic approach to assess the quality of the VERITAS data. The array-trigger rate and far infrared temperature are well suited to identify periods with poor data quality. These are masked by time cuts to obtain a consistent and clean dataset which contains about 4222 hours. The PBH evaporations could occur at any location in the field of view or time within this data. Only a blind search can be performed to identify these short signals. This thesis implements a data-driven deep learning based method to search for short transient signals with VERITAS. It does not depend on the modelling of the effective area and radial acceptance. This work presents the first application of this method to actual observational IACT data. This thesis develops new concepts dealing with the specifics of the data and the transient detection method. These are reflected in the developed data preparation pipeline and search strategies. After correction for trial factors, no candidate PBH evaporation is found in the data. Thus, new constraints of the local rate of PBH evaporations are derived. At the 99\% confidence limit it is below <1.07 * 10^5 pc^-3 yr^-1. This constraint with the new, independent analysis approach is in the range of existing limits for the evaporation rate. This thesis also investigates an alternative novel approach to searching for PBHs with IACTs. Above the sublunar window, the PBH abundance is constrained by optical microlensing studies. The sampling speed, which is of order of minutes to hours for traditional optical telescopes, is a limiting factor in expanding the limits to lower masses. IACTs are also powerful instruments for fast transient optical astronomy with up to O(ns) sampling. This thesis investigates whether IACTs might constrain the sublunar window with optical microlensing observations. This study confirms that, in principle, the fast sampling speed might allow extending microlensing searches into the sublunar mass window. However, the limiting factor for IACTs is the modest sensitivity to detect changes in optical fluxes. This thesis presents the expected rate of detectable events for VERITAS as well as prospects of possible future next-generation IACTs. For VERITAS, the rate of detectable microlensing events in the sublunar range is ~10^-6 per year of observation time. The future prospects for a 100 times more sensitive instrument are at ~0.05 events per year.}, language = {en} }