@misc{ThiekenKienzlerKreibichetal.2016, author = {Thieken, Annegret and Kienzler, Sarah and Kreibich, Heidi and Kuhlicke, Christian and Kunz, Michael and M{\"u}hr, Bernhard and M{\"u}ller, Meike and Otto, Antje and Petrow, Theresia and Pisi, Sebastian and Schr{\"o}ter, Kai}, title = {Review of the flood risk management system in Germany after the major flood in 2013}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100600}, pages = {12}, year = {2016}, abstract = {Widespread flooding in June 2013 caused damage costs of €6 to 8 billion in Germany, and awoke many memories of the floods in August 2002, which resulted in total damage of €11.6 billion and hence was the most expensive natural hazard event in Germany up to now. The event of 2002 does, however, also mark a reorientation toward an integrated flood risk management system in Germany. Therefore, the flood of 2013 offered the opportunity to review how the measures that politics, administration, and civil society have implemented since 2002 helped to cope with the flood and what still needs to be done to achieve effective and more integrated flood risk management. The review highlights considerable improvements on many levels, in particular (1) an increased consideration of flood hazards in spatial planning and urban development, (2) comprehensive property-level mitigation and preparedness measures, (3) more effective flood warnings and improved coordination of disaster response, and (4) a more targeted maintenance of flood defense systems. In 2013, this led to more effective flood management and to a reduction of damage. Nevertheless, important aspects remain unclear and need to be clarified. This particularly holds for balanced and coordinated strategies for reducing and overcoming the impacts of flooding in large catchments, cross-border and interdisciplinary cooperation, the role of the general public in the different phases of flood risk management, as well as a transparent risk transfer system. Recurring flood events reveal that flood risk management is a continuous task. Hence, risk drivers, such as climate change, land-use changes, economic developments, or demographic change and the resultant risks must be investigated at regular intervals, and risk reduction strategies and processes must be reassessed as well as adapted and implemented in a dialogue with all stakeholders.}, language = {en} } @article{ThiekenKienzlerKreibichetal.2016, author = {Thieken, Annegret and Kienzler, Sarah and Kreibich, Heidi and Kuhlicke, Christian and Kunz, Michael and M{\"u}hr, Bernhard and M{\"u}ller, Meike and Otto, Antje and Petrow, Theresia and Pisi, Sebastian and Schr{\"o}ter, Kai}, title = {Review of the flood risk management system in Germany after the major flood in 2013}, series = {Ecology and society : E\&S ; a journal of integrative science for resilience and sustainability}, volume = {21}, journal = {Ecology and society : E\&S ; a journal of integrative science for resilience and sustainability}, number = {2}, publisher = {Resilience Alliance}, address = {Wolfville, NS}, issn = {1708-3087}, doi = {10.5751/ES-08547-210251}, pages = {12}, year = {2016}, abstract = {Widespread flooding in June 2013 caused damage costs of €6 to 8 billion in Germany, and awoke many memories of the floods in August 2002, which resulted in total damage of €11.6 billion and hence was the most expensive natural hazard event in Germany up to now. The event of 2002 does, however, also mark a reorientation toward an integrated flood risk management system in Germany. Therefore, the flood of 2013 offered the opportunity to review how the measures that politics, administration, and civil society have implemented since 2002 helped to cope with the flood and what still needs to be done to achieve effective and more integrated flood risk management. The review highlights considerable improvements on many levels, in particular (1) an increased consideration of flood hazards in spatial planning and urban development, (2) comprehensive property-level mitigation and preparedness measures, (3) more effective flood warnings and improved coordination of disaster response, and (4) a more targeted maintenance of flood defense systems. In 2013, this led to more effective flood management and to a reduction of damage. Nevertheless, important aspects remain unclear and need to be clarified. This particularly holds for balanced and coordinated strategies for reducing and overcoming the impacts of flooding in large catchments, cross-border and interdisciplinary cooperation, the role of the general public in the different phases of flood risk management, as well as a transparent risk transfer system. Recurring flood events reveal that flood risk management is a continuous task. Hence, risk drivers, such as climate change, land-use changes, economic developments, or demographic change and the resultant risks must be investigated at regular intervals, and risk reduction strategies and processes must be reassessed as well as adapted and implemented in a dialogue with all stakeholders.}, language = {en} } @misc{ThiekenKienzlerKreibichetal.2016, author = {Thieken, Annegret and Kienzler, Sarah and Kreibich, Heidi and Kuhlicke, Christian and Kunz, Michael and Muehr, Bernhard and Mueller, Meike and Otto, Antje and Petrow, Theresia and Pisi, Sebastian and Schroeter, Kai}, title = {Review of the flood risk management system in Germany after the major flood in 2013}, series = {Ecology and society : a journal of integrative science for resilience and sustainability}, volume = {21}, journal = {Ecology and society : a journal of integrative science for resilience and sustainability}, publisher = {Resilience Alliance}, address = {Wolfville}, issn = {1708-3087}, doi = {10.5751/ES-08547-210251}, pages = {8612 -- 8614}, year = {2016}, abstract = {Widespread flooding in June 2013 caused damage costs of (sic)6 to 8 billion in Germany, and awoke many memories of the floods in August 2002, which resulted in total damage of (sic)11.6 billion and hence was the most expensive natural hazard event in Germany up to now. The event of 2002 does, however, also mark a reorientation toward an integrated flood risk management system in Germany. Therefore, the flood of 2013 offered the opportunity to review how the measures that politics, administration, and civil society have implemented since 2002 helped to cope with the flood and what still needs to be done to achieve effective and more integrated flood risk management. The review highlights considerable improvements on many levels, in particular (1) an increased consideration of flood hazards in spatial planning and urban development, (2) comprehensive property-level mitigation and preparedness measures, (3) more effective flood warnings and improved coordination of disaster response, and (4) a more targeted maintenance of flood defense systems. In 2013, this led to more effective flood management and to a reduction of damage. Nevertheless, important aspects remain unclear and need to be clarified. This particularly holds for balanced and coordinated strategies for reducing and overcoming the impacts of flooding in large catchments, cross-border and interdisciplinary cooperation, the role of the general public in the different phases of flood risk management, as well as a transparent risk transfer system. Recurring flood events reveal that flood risk management is a continuous task. Hence, risk drivers, such as climate change, land-use changes, economic developments, or demographic change and the resultant risks must be investigated at regular intervals, and risk reduction strategies and processes must be reassessed as well as adapted and implemented in a dialogue with all stakeholders.}, language = {en} } @article{KueblerFriedrichGoldetal.2018, author = {K{\"u}bler, Simon and Friedrich, Anke M. and Gold, Ryan D. and Strecker, Manfred}, title = {Historical coseismic surface deformation of fluvial gravel deposits, Schafberg fault, Lower Rhine Graben, Germany}, series = {International journal of earth sciences}, volume = {107}, journal = {International journal of earth sciences}, number = {2}, publisher = {Springer}, address = {New York}, issn = {1437-3254}, doi = {10.1007/s00531-017-1510-9}, pages = {571 -- 585}, year = {2018}, abstract = {Intraplate earthquakes pose a significant seismic hazard in densely populated rift systems like the Lower Rhine Graben in Central Europe. While the locations of most faults in this region are well known, constraints on their seismogenic potential and earthquake recurrence are limited. In particular, the Holocene deformation history of active faults remains enigmatic. In an exposure excavated across the Schafberg fault in the southwestern Lower Rhine Graben, south of Untermaubach, in the epicentral region of the 1756 Duren earthquake (M (L) 6.2), we mapped a complex deformation zone in Holocene fluvial sediments. We document evidence for at least one paleoearthquake that resulted in vertical surface displacement of 1.2 +/- 0.2 m. The most recent earthquake is constrained to have occurred after 815 AD, and we have modeled three possible earthquake scenarios constraining the timing of the latest event. Coseismic deformation is characterized by vertical offset of sedimentary contacts distributed over a 10-m-wide central damage zone. Faults were identified where they fracture and offset pebbles in the vertically displaced gravel layers and fracture orientation is consistent with the orientation of the Schafberg fault. This study provides the first constraint on the most recent surface-rupturing earthquake on the Schafberg fault. We cannot rule out that this fault acted as the source of the 1756 Duren earthquake. Our study emphasizes the importance of, and the need for, paleoseismic studies in this and other intracontinental regions, in particular on faults with subtle geomorphic expression that would not typically be recognized as being potentially seismically active. Our study documents textural features in unconsolidated sediment that formed in response to coseismic rupturing of the underlying bedrock fault. We suggest that these features, e.g., abundant oriented transgranular fractures in their context, should be added to the list of criteria used to identify a fault as potentially active. Such information would result in an increase of the number of potentially active faults that contribute to seismic hazards of intracontinental regions.}, language = {en} }