@misc{Haakh2009, type = {Master Thesis}, author = {Haakh, Harald Richard}, title = {Cavity QED with superconductors and its application to the Casimir effect}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-32564}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Diese Diplomarbeit untersucht den Casimir-Effekt zwischen normal- und supraleitenden Platten {\"u}ber einen weiten Temperaturbereich, sowie die Casimir-Polder-Wechselwirkung zwischen einem Atom und einer solchen Oberfl{\"a}che. Hierzu wurden vorwiegend numerische und asymptotische Rechnungen durchgef{\"u}hrt. Die optischen Eigenschaften der Oberfl{\"a}chen werden dann aus dielektrischen Funktionen oder optischen Leitf{\"a}higkeiten erhalten. Wichtige Modellen werden vorgestellt und insbesondere im Hinblick auf ihre analytischen und kausalen Eigenschaften untersucht. Es wird vorgestellt, wie sich die Casimir-Energie zwischen zwei normalleitenden Platten berechnen l{\"a}sst. Fr{\"u}here Arbeiten {\"u}ber den in allen metallischen Kavit{\"a}ten vorhandenen Beitrag von Oberfl{\"a}chenplasmonen zur Casimir-Wechselwirkung wurden zum ersten mal auf endliche Temperaturen erweitert. F{\"u}r Supraleiter wird eine analytische Fortsetzung der BCS-Leitf{\"a}higkeiten zu rein imagin{\"a}ren Frequenzen, sowohl innerhalb wie außerhalb des schmutzigen Grenzfalles verschwindender mittlerer freier Wegl{\"a}nge vorgestellt. Es wird gezeigt, dass die aus dieser neuen Beschreibung erhaltene freie Casimir-Energie in bestimmten Bereichen der Materialparameter hervorragend mit der im Rahmen des Zwei-Fluid-Modells f{\"u}r den Supraleiter berechneten {\"u}bereinstimmt. Die Casimir-Entropie einer supraleitenden Kavit{\"a}t erf{\"u}llt den Nernstschen W{\"a}rmesatz und weist einen charakteristischen Sprung beim Erreichen des supraleitenden Phasen{\"u}bergangs auf. Diese Effekte treten ebenfalls in der magnetischen Casimir-Polder-Wechselwirkung eines Atoms mit einer supraleitenden Oberfl{\"a}che auf. Es wird ferner gezeigt, dass die magnetische Dipol-Wechselwirkung eines Atomes mit einem Metall sehr stark von den dissipativen Eigenschaften und insbesondere von den Oberfl{\"a}chenstr{\"o}men abh{\"a}ngt. Dies f{\"u}hrt zu einer starken Unterdr{\"u}ckung der magnetischen Casimir-Polder-Energie bei endlichen Temperaturen und Abst{\"a}nden oberhalb der thermischen Wellenl{\"a}nge. Die Casimir-Polder-Entropie verletzt in einigen Modellen den Nernstschen W{\"a}rmesatz.{\"A}hnliche Effekte werden f{\"u}r den Casimir-Effekt zwischen Platten kontrovers diskutiert. In den entsprechenden elektrischen Dipol-Wechselwirkungen tritt keiner dieser Effekte auf. Die Ergebnisse dieser Arbeit legen nahe, das bekannte Plasma-Modells als Grenzfall eines Supraleiters bei niedrigen Temperaturen (bekannt als London-Theorie) zu betrachten, statt als Beschreibung eines normales Metalles. Supraleiter bieten die M{\"o}glichkeit, die Dissipation der Oberfl{\"a}chenstr{\"o}me in hohem Maße zu steuern. Dies k{\"o}nnte einen experimentellen Zugang zu den optischen Eigenschaften von Metallen bei niedrigen Frequenzen erlauben, die eng mit dem thermischen Casimir-Effekt verkn{\"u}pft sind. Anders als in entsprechenden Mikrowellen-Experimenten sind hierbei die Energien und Impulse unabh{\"a}ngige Gr{\"o}ßen. Die Messung der Oberfl{\"a}chenwechselwirkung zwischen Atomen und Supraleitern ist mit den heute verf{\"u}gbaren Atomfallen auf Mikrochips m{\"o}glich und der magnetische Anteil der Wechselwirkung sollte spektroskopischen Techniken zug{\"a}nglich sein}, language = {en} } @phdthesis{Schiefele2011, author = {Schiefele, J{\"u}rgen}, title = {Casimir-Polder interaction in second quantization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54171}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The Casimir-Polder interaction between a single neutral atom and a nearby surface, arising from the (quantum and thermal) fluctuations of the electromagnetic field, is a cornerstone of cavity quantum electrodynamics (cQED), and theoretically well established. Recently, Bose-Einstein condensates (BECs) of ultracold atoms have been used to test the predictions of cQED. The purpose of the present thesis is to upgrade single-atom cQED with the many-body theory needed to describe trapped atomic BECs. Tools and methods are developed in a second-quantized picture that treats atom and photon fields on the same footing. We formulate a diagrammatic expansion using correlation functions for both the electromagnetic field and the atomic system. The formalism is applied to investigate, for BECs trapped near surfaces, dispersion interactions of the van der Waals-Casimir-Polder type, and the Bosonic stimulation in spontaneous decay of excited atomic states. We also discuss a phononic Casimir effect, which arises from the quantum fluctuations in an interacting BEC.}, language = {en} }