@misc{Galetzka2018, type = {Master Thesis}, author = {Galetzka, Cedric}, title = {Reward and prediction errors in Bayesian sensorimotor control}, doi = {10.25932/publishup-50350}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-503507}, school = {Universit{\"a}t Potsdam}, pages = {53}, year = {2018}, abstract = {Midbrain dopamine neurons invigorate responses by signaling opportunity costs (tonic dopamine) and promote associative learning by encoding a reward prediction error signal (phasic dopamine). Recent studies on Bayesian sensorimotor control have implicated midbrain dopamine concentration in the integration of prior knowledge and current sensory information. The present behavioral study addressed the contributions of tonic and phasic dopamine in a Bayesian decision-making task by alternating reward magnitude and inferring reward prediction errors. Twenty-four participants were asked to indicate the position of a hidden target stimulus under varying prior and likelihood uncertainty. Trial-by-trial rewards were allocated based on performance and two different reward maxima. Overall, participants' behavior agreed with Bayesian decision theory, but indicated excessive reliance on likelihood information. These results thus oppose accounts of statistically optimal integration in sensorimotor control, and suggest that the sensorimotor system is subject to additional decision heuristics. Moreover, higher reward magnitude was not observed to induce enhanced response vigor, and was associated with less Bayes-like integration. In addition, the weighting of prior knowledge and current sensory information proceeded independently of reward prediction errors. Taken together, these findings suggest that the process of combining prior and likelihood uncertainties in sensorimotor control is largely robust to variations in reward.}, language = {en} } @misc{DechBittmannSchaefer2021, author = {Dech, Silas and Bittmann, Frank and Schaefer, Laura}, title = {Assessment of the Adaptive Force of Elbow Extensors in Healthy Subjects Quantified by a Novel Pneumatically Driven Measurement System with Considerations of Its Quality Criteria}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {710}, issn = {1866-8364}, doi = {10.25932/publishup-51095}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-510950}, pages = {25}, year = {2021}, abstract = {Adaptive Force (AF) reflects the capability of the neuromuscular system to adapt adequately to external forces with the intention of maintaining a position or motion. One specific approach to assessing AF is to measure force and limb position during a pneumatically applied increasing external force. Through this method, the highest (AFmax), the maximal isometric (AFisomax) and the maximal eccentric Adaptive Force (AFeccmax) can be determined. The main question of the study was whether the AFisomax is a specific and independent parameter of muscle function compared to other maximal forces. In 13 healthy subjects (9 male and 4 female), the maximal voluntary isometric contraction (pre- and post-MVIC), the three AF parameters and the MVIC with a prior concentric contraction (MVICpri-con) of the elbow extensors were measured 4 times on two days. Arithmetic mean (M) and maximal (Max) torques of all force types were analyzed. Regarding the reliability of the AF parameters between days, the mean changes were 0.31-1.98 Nm (0.61\%-5.47\%, p = 0.175-0.552), the standard errors of measurements (SEM) were 1.29-5.68 Nm (2.53\%-15.70\%) and the ICCs(3,1) = 0.896-0.996. M and Max of AFisomax, AFmax and pre-MVIC correlated highly (r = 0.85-0.98). The M and Max of AFisomax were significantly lower (6.12-14.93 Nm; p ≤ 0.001-0.009) and more variable between trials (coefficient of variation (CVs) ≥ 21.95\%) compared to those of pre-MVIC and AFmax (CVs ≤ 5.4\%). The results suggest the novel measuring procedure is suitable to reliably quantify the AF, whereby the presented measurement errors should be taken into consideration. The AFisomax seems to reflect its own strength capacity and should be detected separately. It is suggested its normalization to the MVIC or AFmax could serve as an indicator of a neuromuscular function.}, language = {en} } @article{DechBittmannSchaefer2021, author = {Dech, Silas and Bittmann, Frank and Schaefer, Laura}, title = {Assessment of the adaptive force of Elbow extensors in healthy subjects quantified by a novel pneumatically driven measurement system with considerations of its quality criteria}, series = {Diagnostics : open access journal}, volume = {11}, journal = {Diagnostics : open access journal}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2075-4418}, doi = {10.3390/diagnostics11060923}, pages = {23}, year = {2021}, abstract = {Adaptive Force (AF) reflects the capability of the neuromuscular system to adapt adequately to external forces with the intention of maintaining a position or motion. One specific approach to assessing AF is to measure force and limb position during a pneumatically applied increasing external force. Through this method, the highest (AFmax), the maximal isometric (AFisomax) and the maximal eccentric Adaptive Force (AFeccmax) can be determined. The main question of the study was whether the AFisomax is a specific and independent parameter of muscle function compared to other maximal forces. In 13 healthy subjects (9 male and 4 female), the maximal voluntary isometric contraction (pre- and post-MVIC), the three AF parameters and the MVIC with a prior concentric contraction (MVICpri-con) of the elbow extensors were measured 4 times on two days. Arithmetic mean (M) and maximal (Max) torques of all force types were analyzed. Regarding the reliability of the AF parameters between days, the mean changes were 0.31-1.98 Nm (0.61\%-5.47\%, p = 0.175-0.552), the standard errors of measurements (SEM) were 1.29-5.68 Nm (2.53\%-15.70\%) and the ICCs(3,1) = 0.896-0.996. M and Max of AFisomax, AFmax and pre-MVIC correlated highly (r = 0.85-0.98). The M and Max of AFisomax were significantly lower (6.12-14.93 Nm; p ≤ 0.001-0.009) and more variable between trials (coefficient of variation (CVs) ≥ 21.95\%) compared to those of pre-MVIC and AFmax (CVs ≤ 5.4\%). The results suggest the novel measuring procedure is suitable to reliably quantify the AF, whereby the presented measurement errors should be taken into consideration. The AFisomax seems to reflect its own strength capacity and should be detected separately. It is suggested its normalization to the MVIC or AFmax could serve as an indicator of a neuromuscular function.}, language = {en} }