@article{CastroWardelmannGruneetal.2018, author = {Castro, Jose Pedro and Wardelmann, Kristina and Grune, Tilman and Kleinridders, Andre}, title = {Mitochondrial Chaperones in the Brain}, series = {Frontiers in Endocrinology}, volume = {9}, journal = {Frontiers in Endocrinology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-2392}, doi = {10.3389/fendo.2018.00196}, pages = {13}, year = {2018}, abstract = {The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA) mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis), cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function) has been observed during aging, metabolic diseases such as type 2 diabetes and in neurode-generative diseases such as Alzheimer's (AD), Parkinson's (PD) or even Huntington's (HD) diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases.}, language = {en} } @misc{CastroWardelmannGruneetal.2018, author = {Castro, Jos{\´e} Pedro and Wardelmann, Kristina and Grune, Tilman and Kleinridders, Andr{\´e}}, title = {Mitochondrial chaperones in the brain}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1031}, issn = {1866-8372}, doi = {10.25932/publishup-46065}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460650}, pages = {15}, year = {2018}, abstract = {The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA) mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis), cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function) has been observed during aging, metabolic diseases such as type 2 diabetes and in neurode-generative diseases such as Alzheimer's (AD), Parkinson's (PD) or even Huntington's (HD) diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases.}, language = {en} } @misc{HenkelBuchheimDieckowCastroetal.2019, author = {Henkel, Janin and Buchheim-Dieckow, Katja and Castro, Jos{\´e} Pedro and Laeger, Thomas and Wardelmann, Kristina and Kleinridders, Andr{\´e} and J{\"o}hrens, Korinna and P{\"u}schel, Gerhard Paul}, title = {Reduced Oxidative Stress and Enhanced FGF21 Formation in Livers of Endurance-Exercised Rats with Diet-Induced NASH}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {807}, issn = {1866-8372}, doi = {10.25932/publishup-44238}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442384}, pages = {17}, year = {2019}, abstract = {Non-alcoholic fatty liver diseases (NAFLD) including the severe form with steatohepatitis (NASH) are highly prevalent ailments to which no approved pharmacological treatment exists. Dietary intervention aiming at 10\% weight reduction is efficient but fails due to low compliance. Increase in physical activity is an alternative that improved NAFLD even in the absence of weight reduction. The underlying mechanisms are unclear and cannot be studied in humans. Here, a rat NAFLD model was developed that reproduces many facets of the diet-induced NAFLD in humans. The impact of endurance exercise was studied in this model. Male Wistar rats received control chow or a NASH-inducing diet rich in fat, cholesterol, and fructose. Both diet groups were subdivided into a sedentary and an endurance exercise group. Animals receiving the NASH-inducing diet gained more body weight, got glucose intolerant and developed a liver pathology with steatosis, hepatocyte hypertrophy, inflammation and fibrosis typical of NAFLD or NASH. Contrary to expectations, endurance exercise did not improve the NASH activity score and even enhanced hepatic inflammation. However, endurance exercise attenuated the hepatic cholesterol overload and the ensuing severe oxidative stress. In addition, exercise improved glucose tolerance possibly in part by induction of hepatic FGF21 production.}, language = {en} } @article{HenkelBuchheimDieckowCastroetal.2019, author = {Henkel, Janin and Buchheim-Dieckow, Katja and Castro, Jos{\´e} Pedro and Laeger, Thomas and Wardelmann, Kristina and Kleinridders, Andr{\´e} and J{\"o}hrens, Korinna and P{\"u}schel, Gerhard Paul}, title = {Reduced Oxidative Stress and Enhanced FGF21 Formation in Livers of Endurance-Exercised Rats with Diet-Induced NASH}, series = {Nutrients}, volume = {11}, journal = {Nutrients}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu11112709}, pages = {15}, year = {2019}, abstract = {Non-alcoholic fatty liver diseases (NAFLD) including the severe form with steatohepatitis (NASH) are highly prevalent ailments to which no approved pharmacological treatment exists. Dietary intervention aiming at 10\% weight reduction is efficient but fails due to low compliance. Increase in physical activity is an alternative that improved NAFLD even in the absence of weight reduction. The underlying mechanisms are unclear and cannot be studied in humans. Here, a rat NAFLD model was developed that reproduces many facets of the diet-induced NAFLD in humans. The impact of endurance exercise was studied in this model. Male Wistar rats received control chow or a NASH-inducing diet rich in fat, cholesterol, and fructose. Both diet groups were subdivided into a sedentary and an endurance exercise group. Animals receiving the NASH-inducing diet gained more body weight, got glucose intolerant and developed a liver pathology with steatosis, hepatocyte hypertrophy, inflammation and fibrosis typical of NAFLD or NASH. Contrary to expectations, endurance exercise did not improve the NASH activity score and even enhanced hepatic inflammation. However, endurance exercise attenuated the hepatic cholesterol overload and the ensuing severe oxidative stress. In addition, exercise improved glucose tolerance possibly in part by induction of hepatic FGF21 production.}, language = {en} } @article{Wardelmann2019, author = {Wardelmann, Kristina}, title = {Hormonal regulation of neuronal mitochondrial unfolded protein response and its impact on metabolism}, pages = {108}, year = {2019}, abstract = {The hypothalamus is the main brain area of central regulation of whole body metabolism through impacting food intake and energy expenditure. For the complex regulation, high amounts of energy are needed and mainly provided by mitochondria. Hence, mitochondrial function is crucial for cell homeostasis and modulates central insulin sensitivity. Thus, mitochondrial dysfunction is associated with insulin resistance in the brain and therefore is involved in the pathogenesis of type-2 diabetes (T2D). Mitochondrial health and protein homeostasis is propagated by mitochondrial stress responses like e.g. mitochondrial unfolded protein response (UPRmt). Therefore, studies regarding the regulation of mitochondrial homeostasis are crucial for understanding its effects on the central nervous system (CNS) for the progression of metabolic and nutrition-dependent disorders. One main aim of this thesis was to investigate the metabolic regulation of mitochondrial stress responsiveness in the hypothalamus. The observed results showed that functional ERK-dependent insulin signaling is needed for regulation of mitochondrial stress response (MSR) genes and positively impacted the metabolism by controlling mitochondrial proteostasis without affecting mitochondrial biogenesis. To further explore the role of MSR genes for brain cell homeostasis and its consequences for the metabolism, one of the key players - the mitochondrial chaperone heat shock protein 10 (Hsp10) - was studied in detail. Hsp10 expression was decreased in insulin-resistant, hyperglycemic db/db mice brains along with increased protein oxidation. Leptin, another key hormone in regulating metabolism, was able to induce Hsp10 in neurons. Appropriately, lentiviral-mediated knock down (KD) of Hsp10 introduced into hypothalamic CLU-183 cells induced mitochondrial dysfunction, altered mitochondrial dynamics and increased contact sites between mitochondria and endoplasmic reticulum (ER). In addition, Hsp10 KD caused cellular insulin resistance along with increasing oxidative stress specifically in mitochondrial fraction. Interestingly, acute Hsp10 KD in the arcuate nucleus of the hypothalamus in C57BL/6N male mice did not change body weight or food intake, but it increased plasma leptin concentrations suggesting an effect on global leptin signaling. It increased hepatic markers of gluconeogenesis and hepatic insulin resistance along with features of low-grade inflammation. Long-term studies of hypothalamic Hsp10 KD mice revealed unaltered systemic insulin sensitivity. The demonstrated increase in markers of hepatic gluconeogenesis of acute Hsp10 KD was still exhibited after 13 weeks, but insulin resistance in the liver was no longer observed. In conclusion, hypothalamic insulin action regulates MSR and ensures proper mitochondrial function which positively affects metabolism. In addition, hypothalamic Hsp10 acts as a modulator of both insulin and leptin signaling and is identified as pivotal for the regulation of central mitochondrial function as well as insulin sensitivity in the brain and it impacts liver function. It may present a regulator of brain-liver crosstalk influencing hepatic gluconeogenesis and insulin sensitivity through a novel regulatory signaling mechanism.}, language = {en} } @article{WeiFrankeOstetal.2020, author = {Wei, Xiaoyan and Franke, Julia and Ost, Mario and Wardelmann, Kristina and B{\"o}rno, Stefan and Timmermann, Bernd and Meierhofer, David and Kleinridders, Andre and Klaus, Susanne and Stricker, Sigmar}, title = {Cell autonomous requirement of neurofibromin (Nf1) for postnatal muscle hypertrophic growth and metabolic homeostasis}, series = {Journal of cachexia, sarcopenia and muscle}, volume = {11}, journal = {Journal of cachexia, sarcopenia and muscle}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {2190-5991}, doi = {10.1002/jcsm.12632}, pages = {1758 -- 1778}, year = {2020}, abstract = {Background Neurofibromatosis type 1 (NF1) is a multi-organ disease caused by mutations in neurofibromin 1 (NF1). Amongst other features, NF1 patients frequently show reduced muscle mass and strength, impairing patients' mobility and increasing the risk of fall. The role of Nf1 in muscle and the cause for the NF1-associated myopathy are mostly unknown. Methods To dissect the function ofNf1in muscle, we created muscle-specific knockout mouse models for NF1, inactivatingNf1in the prenatal myogenic lineage either under the Lbx1 promoter or under the Myf5 promoter. Mice were analysed during prenatal and postnatal myogenesis and muscle growth. Results Nf1(Lbx1)and Nf1(Myf5)animals showed only mild defects in prenatal myogenesis. Nf1(Lbx1)animals were perinatally lethal, while Nf1(Myf5)animals survived only up to approximately 25 weeks. A comprehensive phenotypic characterization of Nf1(Myf5)animals showed decreased postnatal growth, reduced muscle size, and fast fibre atrophy. Proteome and transcriptome analyses of muscle tissue indicated decreased protein synthesis and increased proteasomal degradation, and decreased glycolytic and increased oxidative activity in muscle tissue. High-resolution respirometry confirmed enhanced oxidative metabolism in Nf1(Myf5)muscles, which was concomitant to a fibre type shift from type 2B to type 2A and type 1. Moreover, Nf1(Myf5)muscles showed hallmarks of decreased activation of mTORC1 and increased expression of atrogenes. Remarkably, loss of Nf1 promoted a robust activation of AMPK with a gene expression profile indicative of increased fatty acid catabolism. Additionally, we observed a strong induction of genes encoding catabolic cytokines in muscle Nf1(Myf5)animals, in line with a drastic reduction of white, but not brown adipose tissue. Conclusions Our results demonstrate a cell autonomous role for Nf1 in myogenic cells during postnatal muscle growth required for metabolic and proteostatic homeostasis. Furthermore, Nf1 deficiency in muscle drives cross-tissue communication and mobilization of lipid reserves.}, language = {en} } @misc{WardelmannRathCastroetal.2021, author = {Wardelmann, Kristina and Rath, Michaela and Castro, Jos{\´e} Pedro and Bl{\"u}mel, Sabine and Schell, Mareike and Hauffe, Robert and Schumacher, Fabian and Flore, Tanina and Ritter, Katrin and Wernitz, Andreas and Hosoi, Toru and Ozawa, Koichiro and Kleuser, Burkhard and Weiß, J{\"u}rgen and Sch{\"u}rmann, Annette and Kleinridders, Andr{\´e}}, title = {Central acting Hsp10 regulates mitochondrial function, fatty acid metabolism and insulin sensitivity in the hypothalamus}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {5}, issn = {1866-8372}, doi = {10.25932/publishup-52298}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-522985}, pages = {24}, year = {2021}, abstract = {Mitochondria are critical for hypothalamic function and regulators of metabolism. Hypothalamic mitochondrial dysfunction with decreased mitochondrial chaperone expression is present in type 2 diabetes (T2D). Recently, we demonstrated that a dysregulated mitochondrial stress response (MSR) with reduced chaperone expression in the hypothalamus is an early event in obesity development due to insufficient insulin signaling. Although insulin activates this response and improves metabolism, the metabolic impact of one of its members, the mitochondrial chaperone heat shock protein 10 (Hsp10), is unknown. Thus, we hypothesized that a reduction of Hsp10 in hypothalamic neurons will impair mitochondrial function and impact brain insulin action. Therefore, we investigated the role of chaperone Hsp10 by introducing a lentiviral-mediated Hsp10 knockdown (KD) in the hypothalamic cell line CLU-183 and in the arcuate nucleus (ARC) of C57BL/6N male mice. We analyzed mitochondrial function and insulin signaling utilizing qPCR, Western blot, XF96 Analyzer, immunohistochemistry, and microscopy techniques. We show that Hsp10 expression is reduced in T2D mice brains and regulated by leptin in vitro. Hsp10 KD in hypothalamic cells induced mitochondrial dysfunction with altered fatty acid metabolism and increased mitochondria-specific oxidative stress resulting in neuronal insulin resistance. Consequently, the reduction of Hsp10 in the ARC of C57BL/6N mice caused hypothalamic insulin resistance with acute liver insulin resistance.}, language = {en} } @article{WardelmannRathCastroetal.2021, author = {Wardelmann, Kristina and Rath, Michaela and Castro, Jos{\´e} Pedro and Bl{\"u}mel, Sabine and Schell, Mareike and Hauffe, Robert and Schumacher, Fabian and Flore, Tanina and Ritter, Katrin and Wernitz, Andreas and Hosoi, Toru and Ozawa, Koichiro and Kleuser, Burkhard and Weiß, J{\"u}rgen and Sch{\"u}rmann, Annette and Kleinridders, Andr{\´e}}, title = {Central acting Hsp10 regulates mitochondrial function, fatty acid metabolism and insulin sensitivity in the hypothalamus}, series = {Antioxidants}, volume = {10}, journal = {Antioxidants}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2076-3921}, doi = {10.3390/antiox10050711}, pages = {22}, year = {2021}, abstract = {Mitochondria are critical for hypothalamic function and regulators of metabolism. Hypothalamic mitochondrial dysfunction with decreased mitochondrial chaperone expression is present in type 2 diabetes (T2D). Recently, we demonstrated that a dysregulated mitochondrial stress response (MSR) with reduced chaperone expression in the hypothalamus is an early event in obesity development due to insufficient insulin signaling. Although insulin activates this response and improves metabolism, the metabolic impact of one of its members, the mitochondrial chaperone heat shock protein 10 (Hsp10), is unknown. Thus, we hypothesized that a reduction of Hsp10 in hypothalamic neurons will impair mitochondrial function and impact brain insulin action. Therefore, we investigated the role of chaperone Hsp10 by introducing a lentiviral-mediated Hsp10 knockdown (KD) in the hypothalamic cell line CLU-183 and in the arcuate nucleus (ARC) of C57BL/6N male mice. We analyzed mitochondrial function and insulin signaling utilizing qPCR, Western blot, XF96 Analyzer, immunohistochemistry, and microscopy techniques. We show that Hsp10 expression is reduced in T2D mice brains and regulated by leptin in vitro. Hsp10 KD in hypothalamic cells induced mitochondrial dysfunction with altered fatty acid metabolism and increased mitochondria-specific oxidative stress resulting in neuronal insulin resistance. Consequently, the reduction of Hsp10 in the ARC of C57BL/6N mice caused hypothalamic insulin resistance with acute liver insulin resistance.}, language = {en} } @article{SchellWardelmannKleinridders2021, author = {Schell, Mareike and Wardelmann, Kristina and Kleinridders, Andre}, title = {Untangling the effect of insulin action on brain mitochondria and metabolism}, series = {Journal of neuroendocrinology}, volume = {33}, journal = {Journal of neuroendocrinology}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0953-8194}, doi = {10.1111/jne.12932}, pages = {14}, year = {2021}, abstract = {The regulation of energy homeostasis is controlled by the brain and, besides requiring high amounts of energy, it relies on functional insulin/insulin-like growth factor (IGF)-1 signalling in the central nervous system. This energy is mainly provided by mitochondria in form of ATP. Thus, there is an intricate interplay between mitochondrial function and insulin/IGF-1 action to enable functional brain signalling and, accordingly, propagate a healthy metabolism. To adapt to different nutritional conditions, the brain is able to sense the current energy status via mitochondrial and insulin signalling-dependent pathways and exerts an appropriate metabolic response. However, regional, cell type and receptor-specific consequences of this interaction occur and are linked to diverse outcomes such as altered nutrient sensing, body weight regulation or even cognitive function. Impairments of this cross-talk can lead to obesity and glucose intolerance and are linked to neurodegenerative diseases, yet they also induce a self-sustainable, dysfunctional 'metabolic triangle' characterised by insulin resistance, mitochondrial dysfunction and inflammation in the brain. The identification of causal factors deteriorating insulin action, mitochondrial function and concomitantly a signature of metabolic stress in the brain is of utter importance to offer novel mechanistic insights into development of the continuously rising prevalence of non-communicable diseases such as type 2 diabetes and neurodegeneration. This review aims to determine the effect of insulin action on brain mitochondrial function and energy metabolism. It precisely outlines the interaction and differences between insulin action, insulin-like growth factor (IGF)-1 signalling and mitochondrial function; distinguishes between causality and association; and reveals its consequences for metabolism and cognition. We hypothesise that an improvement of at least one signalling pathway can overcome the vicious cycle of a self-perpetuating metabolic dysfunction in the brain present in metabolic and neurodegenerative diseases.}, language = {en} }