@article{RaabSkoczowskyMenzel2003, author = {Raab, Volker and Skoczowsky, Danilo and Menzel, Ralf}, title = {Tuning high-power diodes with as much as 0.38 W of power and M2 = 1.2 over a range of 32 nm with 3-GHz bandwidth}, year = {2003}, language = {en} } @article{JechowLichtnerMenzeletal.2009, author = {Jechow, Andreas and Lichtner, Mark and Menzel, Ralf and Radziunas, Mindaugas and Skoczowsky, Danilo and Vladimirov, Andrei G.}, title = {Stripe-array diode-laser in an off-axis external cavity : theory and experiment}, issn = {1094-4087}, doi = {10.1364/OE.17.019599}, year = {2009}, abstract = {Stripe-array diode lasers naturally operate in an anti-phase supermode. This produces a sharp double lobe far field at angles {\~n}a depending on the period of the array. In this paper a 40 emitter gain guided stripe-array laterally coupled by off-axis filtered feedback is investigated experimentally and numerically. We predict theoretically and confirm experimentally that at doubled feedback angle 2a a stable higher order supermode exists with twice the number of emitters per array period. The theoretical model is based on time domain traveling wave equations for optical fields coupled to the carrier density equation taking into account diffusion of carriers. Feedback from the external reflector is modeled using Fresnel integration.}, language = {en} } @article{JechowLichtnerMenzeletal.2009, author = {Jechow, Andreas and Lichtner, Mark and Menzel, Ralf and Radziunas, Mindaugas and Skoczowsky, Danilo and Vladimirov, Andrei G.}, title = {Stripe-array diode-laser in an off-axis external cavity : theory and experiment}, issn = {1094-4087}, doi = {10.1364/OE.17.019599}, year = {2009}, abstract = {Stripe-array diode lasers naturally operate in an anti-phase supermode. This produces a sharp double lobe far field at angles +/-alpha depending on the period of the array. In this paper a 40 emitter gain guided stripe-array laterally coupled by off-axis filtered feedback is investigated experimentally and numerically. We predict theoretically and confirm experimentally that at doubled feedback angle 2 alpha a stable higher order supermode exists with twice the number of emitters per array period. The theoretical model is based on time domain traveling wave equations for optical fields coupled to the carrier density equation taking into account diffusion of carriers. Feedback from the external reflector is modeled using Fresnel integration.}, language = {en} } @article{SkoczowskyJechowMenzeletal.2010, author = {Skoczowsky, Danilo and Jechow, Andreas and Menzel, Ralf and Paschke, Katrin and Erbert, G{\"o}tz}, title = {Efficient second-harmonic generation using a semiconductor tapered amplifier in a coupled ring-resonator geometry}, issn = {0146-9592}, doi = {10.1364/OL.35.000232}, year = {2010}, abstract = {A new approach for efficient second-harmonic generation using diode lasers is presented. The experimental setup is based on a tapered amplifier operated in a ring resonator that is coupled to a miniaturized enhancement ring resonator containing a periodically poled lithium niobate crystal. Frequency locking of the diode laser emission to the resonance frequency of the enhancement cavity is realized purely optically, resulting in stable, single-frequency operation. Blue light at 488 nm with an output power of 310 mW is generated with an optical-to-optical conversion efficiency of 18\%.}, language = {en} } @article{SkoczowskyJechowStuermeretal.2010, author = {Skoczowsky, Danilo and Jechow, Andreas and St{\"u}rmer, Herbert and Poßner, Torsten and Sacher, Joachim and Menzel, Ralf}, title = {Quasi-monolithic ring resonator for efficient frequency doubling of an external cavity diode laser}, issn = {0946-2171}, doi = {10.1007/s00340-009-3802-7}, year = {2010}, abstract = {A quasi-monolithic second-harmonic-generation ring resonator assembled with miniaturized components is presented. The ring contains a 10-mm-long bulk periodically poled lithium niobate crystal for second-harmonic generation, four plane mirrors and two gradient-index lenses. All parts are mounted on a glass substrate with an overall size of 19.5 mmx8.5 mmx4 mm. As pump source a broad-area laser diode operated in an external resonator with Littrow arrangement is utilized. This external cavity diode laser provides near diffraction limited, narrow-bandwidth emission with an optical output power of 450 mW at a wavelength of 976 nm. Locking of the diode laser emission to the resonance frequency of the ring cavity was achieved by an optical self-injection locking technique. With this setup more than 126 mW of diffraction-limited blue light at 488 nm could be generated. The opto-optical conversion efficiency was 28\% and a wall plug efficiency better than 5.5\% could be achieved.}, language = {en} } @phdthesis{Skoczowsky2012, author = {Skoczowsky, Danilo}, title = {Experimentelle Untersuchungen zur optischen Kopplung von Resonatoren f{\"u}r eine effiziente Frequenzverdopplung}, address = {Potsdam}, pages = {103 S.}, year = {2012}, language = {de} }