@misc{Klaumuenzer2008, type = {Master Thesis}, author = {Klaum{\"u}nzer, Bastian}, title = {Stickstoffinversion in Azacyclen : Modellsimulationen f{\"u}r einen molekularen Schalter}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17482}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {In dieser Arbeit wird durch Modellrechnungen gezeigt, wie die Stickstoffinversion in Azacyclen als molekularer Schalter genutzt werden k{\"o}nnte. Hierzu werden ein Fluorazetidin- und ein Fluorazacyclopentanderviat quantenchemisch untersucht. Das letztere Molek{\"u}l wird auch quantendynamisch untersucht. Jedes der beiden Molek{\"u}le besitzt zwei stabile Konformationen. Es wird gezeigt, dass das Azabicyclopentanderivat von der einen Konformation mittels zweier linear polarisierter IR-Laserpulse durch sogenanntes "ladder climbing" in die andere {\"u}berf{\"u}hrt werden kann.}, language = {de} } @article{KlaumuenzerKroener2009, author = {Klaum{\"u}nzer, Bastian and Kroener, Dominik}, title = {N-Inversion in 2-azabicyclopentane derivatives : model simulations for a laser controlled molecular switch}, issn = {1144-0546}, doi = {10.1039/B812319e}, year = {2009}, abstract = {We report model quantum simulations for the nitrogen inversion in 2-azabicyclo[1.1.1] pentane derivates controlled by laser pulses proposing to use this class of molecules as molecular switches. The derivatives trans-5- fluoro-2-methyl-2-azabicyclo[1.1.1] pentane and cis-5-fluoro-2-methyl-2-azabicyclo[1.1.1] pentane are investigated by means of density functional theory and quantum wave packet dynamics. The molecules have two stable, i.e. energetically well-separated, conformers along the N-inversion coordinate. In 1D model simulations the transformation from one conformer to the other is accomplished in the electronic ground state by using two overlapping chirped linearly polarized IR laser pulses for the trans-and cis-isomer or alternatively via an electronic excited state employing a pump- dump sequence of ultrashort UV laser pulses.}, language = {en} } @article{WeigelDobryakovKlaumuenzeretal.2011, author = {Weigel, A. and Dobryakov, A. and Klaum{\"u}nzer, Bastian and Sajadi, M. and Saalfrank, Peter and Ernsting, N. P.}, title = {Femtosecond stimulated raman spectroscopy of flavin after optical excitation}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {115}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {13}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/jp1117129}, pages = {3656 -- 3680}, year = {2011}, abstract = {In blue-light photoreceptors using flavin (BLUF), the signaling state is formed already within several 100 ps after illumination, with only small changes of the absorption spectrum. The accompanying structural evolution can, in principle, be monitored by femtosecond stimulated Raman spectroscopy (FSRS). The method is used here to characterize the excited-state properties of riboflavin and flavin adenine dinucleotide in polar solvents. Raman modes are observed in the range 90-1800 cm(-1) for the electronic ground state S-0 and upon excitation to the S-1 state, and modes >1000 cm(-1) of both states are assigned with the help of quantum-chemical calculations. Line shapes are shown to depend sensitively on resonance conditions. They are affected by wavepacket motion in any of the participating electronic states, resulting in complex amplitude modulation of the stimulated Raman spectra. Wavepackets in S-1 can be marked, and thus isolated, by stimulated-emission pumping with the picosecond Raman pulses. Excited-state absorption spectra are obtained from a quantitative comparison of broadband transient fluorescence and absorption. In this way, the resonance conditions for FSRS are determined. Early differences of the emission spectrum depend on excess vibrational energy, and solvation is seen as dynamic Stokes shift of the emission band. The ne state is evidenced only through changes of emission oscillator strength during solvation. S-1 quenching by adenine is seen with all methods in terms of dynamics, not by spectral intermediates.}, language = {en} } @phdthesis{Klaumuenzer2012, author = {Klaum{\"u}nzer, Bastian}, title = {Quantenchemische und molekulardynamische Untersuchungen zur Photoanregung von Riboflavin}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63171}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Die Photophysik und Photochemie von Flavinen sind aufgrund ihrer biologischen Funktion, inbesondere von Flavoproteinen, von großen Interesse. Flavoproteine spielen eine große Rolle in einer Vielzahl von biologischen Prozessen, z.B. Biolumineszenz, Entfernung von Radikalen, die bei oxidativem Stress entstehen, Photosynthese und DNA-Reparatur. Die spektroskopischen Eigenschaften des Flavin-Cofaktors machen diesen zu einem nat{\"u}rlichen Reporter f{\"u}r Ver{\"a}nderungen innerhalb des aktiven Zentrums. Deshalb sind die Flavoproteine eine der am meisten untersuchten Enzymfamilien. Eine biologische Aktivit{\"a}t des Flavins f{\"u}hrt {\"u}ber einen elektronisch angeregten Zustand, wo dann, abh{\"a}ngig von der Aminos{\"a}ureumgebung, ein bestimmter Mechanismus zu einem biologischen Prozess f{\"u}hrt (Photozyklus). Ein wichtiges Analysetool zum Verst{\"a}ndnis des anf{\"a}nglichen Photoanregungsschritts der Flavine sind die elektronische und die Schwingungsspektroskopie. In dieser Arbeit wurden die Prozesse von Riboflavin (RF) w{\"a}hrend und nach optischer Anregung mit theoretischen Mitteln beleuchtet. Dazu wurden quantenchemische Berechnungen f{\"u}r Schwingungsspektren (vibratorische) von Riboflavin, auch Laktoflavin oder Vitamin B2 genannt, dem Grundmolek{\"u}l der Chromophore biologischer Blaulichtrezeptoren, in dessen elektronischem Grundzustand und dessen niedrigsten angeregten Zustand durchgef{\"u}hrt. Weiterhin wurden vibronische (vibratorische+elektronische) Absorptionsspektren und ein vibronisches Emissionsspektrum berechnet. Die so berechneten Schwingungs- und elektronischen Spektren sind in guter qualitativer wie quantitativer {\"U}bereinstimmung mit gemessenen Werten, und helfen so, die experimentellen Signale der Photoanregung von Flavinen zuzuweisen. Unmittelbar nach der Photoanregung wurde ein Verlust des Doppelbindungscharakters im polaren Bereich des Ringssystems beobachtet, was zu der vibronischen Feinstruktur im elektronischen Absorptions- und Emissionsspektrum f{\"u}hrte. Hier zeigte sich zudem, dass neben den vibronischen Effekten auch die L{\"o}sungsmitteleffekte wichtig f{\"u}r das quantitative Verst{\"a}ndnis der Photophysik der Flavine in L{\"o}sung sind. Um Details des optischen Anregungsprozesses als initialen, elementaren Schritt zur Signalweiterleitung zu entschl{\"u}sseln, wurden ultraschnelle (femtosekundenaufgel{\"o}ste) Experimente durchgef{\"u}hrt, die die Photoaktivierung des Flavins untersuchen. Diese Arbeit soll zu einem weiteren Verst{\"a}ndnis und der Interpretation dieser Experimente durch das Studium der Post-Anregungsschwingungsdynamik von Riboflavin und mikrosolvatisiertem Riboflavin beitragen. Dazu wurde eine 200 fs lange Molekulardynamik in angeregten Zust{\"a}nden betrachtet. Durch die Analyse charakteristischer Atombewegungen und durch die Berechnungen zeitaufgel{\"o}ster Emissionsspektren fand man heraus, dass nach der optischen Anregung Schwingungen im Ringssystem des Riboflavins einsetzen. Mit Hilfe dieser Berechnungen kann die Umverteilung der Energie im angeregten Zustand beobachtet werden. Neben den theoretischen Untersuchungen zu Riboflavin in der Gasphase und auch in L{\"o}sung wurde ein Modell f{\"u}r eine BLUF (Blue-Light Photoreceptor Using Flavin) Dom{\"a}ne, ein Flavin benutzender Photorezeptor, erstellt. Hierbei zeigt sich, dass man die in dieser Arbeit angewendeten Analysemethoden auch auf biologisch relevante Systeme anwenden kann.}, language = {de} } @article{KlaumuenzerKroenerLischkaetal.2012, author = {Klaum{\"u}nzer, Bastian and Kr{\"o}ner, Dominik and Lischka, Hans and Saalfrank, Peter}, title = {Non-adiabatic excited state dynamics of riboflavin after photoexcitation}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {14}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {24}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c2cp40978j}, pages = {8693 -- 8702}, year = {2012}, abstract = {Flavins are chromophores in light-gated enzymes and therefore central in many photobiological processes. To unravel the optical excitation process as the initial, elementary step towards signal transduction, detailed ultrafast (femtosecond) experiments probing the photo-activation of flavins have been carried out recently [Weigel et al., J. Phys. Chem. B, 2011, 115, 3656-3680.]. The present paper contributes to a further understanding and interpretation of these experiments by studying the post-excitation vibrational dynamics of riboflavin (RF) and microsolvated riboflavin, RF center dot 4H(2)O, using first principles non-adiabatic molecular dynamics. By analyzing the characteristic atom motions and calculating time-resolved stimulated emission spectra following pi pi* excitation, it is found that after optical excitation C-N and C-C vibrations in the isoalloxazine rings of riboflavin set in. The Franck-Condon (vertically excited) state decays within about 10 fs, in agreement with experiment. Anharmonic coupling leads to Intramolecular Vibrational energy Redistribution (IVR) on the timescale of about 80-100 fs, first to (other) C-C stretching modes of the isoalloxazine rings, then by energy spread over the whole molecule, including low-frequency in-plane modes. The IVR is accompanied by a red-shift and broadening of the emission spectrum. When RF is microsolvated with four water molecules, an overall redshift of optical spectra by about 20 nm is observed but the relaxation dynamics is only slightly affected. For several trajectories, a tendency for hydrogen transfer from water to flavin-nitrogen (N-5) was found.}, language = {en} } @article{SteyrleuthnerSchubertHowardetal.2012, author = {Steyrleuthner, Robert and Schubert, Marcel and Howard, Ian and Klaum{\"u}nzer, Bastian and Schilling, Kristian and Chen, Zhihua and Saalfrank, Peter and Laquai, Frederic and Facchetti, Antonio and Neher, Dieter}, title = {Aggregation in a high-mobility n-type low-bandgap copolymer with implications on semicrystalline morphology}, series = {Journal of the American Chemical Society}, volume = {134}, journal = {Journal of the American Chemical Society}, number = {44}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/ja306844f}, pages = {18303 -- 18317}, year = {2012}, abstract = {We explore the photophysics of P(NDI2OD-T2), a high-mobility and air-stable n-type donor/acceptor polymer. Detailed steady-state UV-vis and photoluminescence (PL) measurements on solutions of P(NDI2OD-T2) reveal distinct signatures of aggregation. By performing quantum chemical calculations, we can assign these spectral features to unaggregated and stacked polymer chains. NMR measurements independently confirm the aggregation phenomena of P(NDI2OD-T2) in solution. The detailed analysis of the optical spectra shows that aggregation is a two-step process with different types of aggregates, which we confirm by time-dependent PL measurements. Analytical ultracentrifugation measurements suggest that aggregation takes place within the single polymer chain upon coiling. By transferring these results to thin P(NDI2OD-T2) films, we can conclude that film formation is mainly governed by the chain collapse, leading in general to a high aggregate content of similar to 45\%. This process also inhibits the formation of amorphous and disordered P(NDI2OD-T2) films.}, language = {en} }