@article{LichtDupontNivetPullenetal.2016, author = {Licht, Alexis and Dupont-Nivet, Guillaume and Pullen, A. and Kapp, P. and Abels, Hemmo A. and Lai, Z. and Guo, Z. and Abell, Jordan and Giesler, D.}, title = {Resilience of the Asian atmospheric circulation shown by Paleogene dust provenance}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms12390}, pages = {885 -- 894}, year = {2016}, abstract = {The onset of modern central Asian atmospheric circulation is traditionally linked to the interplay of surface uplift of the Mongolian and Tibetan-Himalayan orogens, retreat of the Paratethys sea from central Asia and Cenozoic global cooling. Although the role of these players has not yet been unravelled, the vast dust deposits of central China support the presence of arid conditions and modern atmospheric pathways for the last 25 million years (Myr). Here, we present provenance data from older (42-33 Myr) dust deposits, at a time when the Tibetan Plateau was less developed, the Paratethys sea still present in central Asia and atmospheric pCO(2) much higher. Our results show that dust sources and near-surface atmospheric circulation have changed little since at least 42 Myr. Our findings indicate that the locus of central Asian high pressures and concurrent aridity is a resilient feature only modulated by mountain building, global cooling and sea retreat.}, language = {en} } @article{PremkeAttermeyerAugustinetal.2016, author = {Premke, Katrin and Attermeyer, Katrin and Augustin, J{\"u}rgen and Cabezas, Alvaro and Casper, Peter and Deumlich, Detlef and Gelbrecht, J{\"o}rg and Gerke, Horst H. and Gessler, Arthur and Großart, Hans-Peter and Hilt, Sabine and Hupfer, Michael and Kalettka, Thomas and Kayler, Zachary and Lischeid, Gunnar and Sommer, Michael and Zak, Dominik}, title = {The importance of landscape diversity for carbon fluxes at the landscape level: small-scale heterogeneity matters}, series = {Wiley Interdisciplinary Reviews : Water}, volume = {3}, journal = {Wiley Interdisciplinary Reviews : Water}, publisher = {Wiley}, address = {Hoboken}, issn = {2049-1948}, doi = {10.1002/wat2.1147}, pages = {601 -- 617}, year = {2016}, abstract = {Landscapes can be viewed as spatially heterogeneous areas encompassing terrestrial and aquatic domains. To date, most landscape carbon (C) fluxes have been estimated by accounting for terrestrial ecosystems, while aquatic ecosystems have been largely neglected. However, a robust assessment of C fluxes on the landscape scale requires the estimation of fluxes within and between both landscape components. Here, we compiled data from the literature on C fluxes across the air-water interface from various landscape components. We simulated C emissions and uptake for five different scenarios which represent a gradient of increasing spatial heterogeneity within a temperate young moraine landscape: (I) a homogeneous landscape with only cropland and large lakes; (II) separation of the terrestrial domain into cropland and forest; (III) further separation into cropland, forest, and grassland; (IV) additional division of the aquatic area into large lakes and peatlands; and (V) further separation of the aquatic area into large lakes, peatlands, running waters, and small water bodies These simulations suggest that C fluxes at the landscape scale might depend on spatial heterogeneity and landscape diversity, among other factors. When we consider spatial heterogeneity and diversity alone, small inland waters appear to play a pivotal and previously underestimated role in landscape greenhouse gas emissions that may be regarded as C hot spots. Approaches focusing on the landscape scale will also enable improved projections of ecosystems' responses to perturbations, e.g., due to global change and anthropogenic activities, and evaluations of the specific role individual landscape components play in regional C fluxes. WIREs Water 2016, 3:601-617. doi: 10.1002/wat2.1147}, language = {en} } @article{CuiLoeberAlquezarPlanasetal.2016, author = {Cui, Pin and L{\"o}ber, Ulrike and Alquezar-Planas, David E. and Ishida, Yasuko and Courtiol, Alexandre and Timms, Peter and Johnson, Rebecca N. and Lenz, Dorina and Helgen, Kristofer M. and Roca, Alfred L. and Hartman, Stefanie and Greenwood, Alex D.}, title = {Comprehensive profiling of retroviral integration sites using target enrichment methods from historical koala samples without an assembled reference genome}, series = {PeerJ}, volume = {4}, journal = {PeerJ}, publisher = {PeerJ Inc.}, address = {London}, issn = {2167-8359}, doi = {10.7717/peerj.1847}, pages = {29}, year = {2016}, abstract = {Background. Retroviral integration into the host germline results in permanent viral colonization of vertebrate genomes. The koala retrovirus (KoRV) is currently invading the germline of the koala (Phascolarctos cinereus) and provides a unique opportunity for studying retroviral endogenization. Previous analysis of KoRV integration patterns in modern koalas demonstrate that they share integration sites primarily if they are related, indicating that the process is currently driven by vertical transmission rather than infection. However, due to methodological challenges, KoRV integrations have not been comprehensively characterized. Results. To overcome these challenges, we applied and compared three target enrichment techniques coupled with next generation sequencing (NGS) and a newly customized sequence-clustering based computational pipeline to determine the integration sites for 10 museum Queensland and New South Wales (NSW) koala samples collected between the 1870s and late 1980s. A secondary aim of this study sought to identify common integration sites across modern and historical specimens by comparing our dataset to previously published studies. Several million sequences were processed, and the KoRV integration sites in each koala were characterized. Conclusions. Although the three enrichment methods each exhibited bias in integration site retrieval, a combination of two methods, Primer Extension Capture and hybridization capture is recommended for future studies on historical samples. Moreover, identification of integration sites shows that the proportion of integration sites shared between any two koalas is quite small.}, language = {en} }