@article{OlenBookhagenStrecker2016, author = {Olen, Stephanie M. and Bookhagen, Bodo and Strecker, Manfred}, title = {Role of climate and vegetation density in modulating denudation rates in the Himalaya}, series = {Earth \& planetary science letters}, volume = {445}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2016.03.047}, pages = {57 -- 67}, year = {2016}, abstract = {Vegetation has long been hypothesized to influence the nature and rates of surface processes. We test the possible impact of vegetation and climate on denudation rates at orogen scale by taking advantage of a pronounced along-strike gradient in rainfall and vegetation density in the Himalaya. We combine 12 new Be-10 denudation rates from the Sutlej Valley and 123 published denudation rates from fluvially-dominated catchments in the Himalaya with remotely-sensed measures of vegetation density and rainfall metrics, and with tectonic and lithologic constraints. In addition, we perform topographic analyses to assess the contribution of vegetation and climate in modulating denudation rates along strike. We observe variations in denudation rates and the relationship between denudation and topography along strike that are most strongly controlled by local rainfall amount and vegetation density, and cannot be explained by along-strike differences in tectonics or lithology. A W-E along-strike decrease in denudation rate variability positively correlates with the seasonality of vegetation density (R = 0.95, p < 0.05), and negatively correlates with mean vegetation density (R = -0.84, p < 0.05). Vegetation density modulates the topographic response to changing denudation rates, such that the functional relationship between denudation rate and topographic steepness becomes increasingly linear as vegetation density increases. We suggest that while tectonic processes locally control the pattern of denudation rates across strike of the Himalaya (i.e., S-N), along strike of the orogen (i.e., E-W) climate exerts a measurable influence on how denudation rates scatter around long-term, tectonically-controlled erosion, and on the functional relationship between topography and denudation. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{ForteWhippleBookhagenetal.2016, author = {Forte, Adam M. and Whipple, Kelin X. and Bookhagen, Bodo and Rossi, Matthew W.}, title = {Decoupling of modern shortening rates, climate, and topography in the Caucasus}, series = {Earth \& planetary science letters}, volume = {449}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2016.06.013}, pages = {282 -- 294}, year = {2016}, abstract = {The Greater and Lesser Caucasus mountains and their associated foreland basins contain similar rock types, experience a similar two-fold, along-strike variation in mean annual precipitation, and were affected by extreme base-level drops of the neighboring Caspian Sea. However, the two Caucasus ranges are characterized by decidedly different tectonic regimes and rates of deformation that are subject to moderate (less than an order of magnitude) gradients in climate, and thus allow for a unique opportunity to isolate the effects of climate and tectonics in the evolution of topography within active orogens. There is an apparent disconnect between modern climate, shortening rates, and topography of both the Greater Caucasus and Lesser Caucasus which exhibit remarkably similar topography along-strike despite the gradients in forcing. By combining multiple datasets, we examine plausible causes for this disconnect by presenting a detailed analysis of the topography of both ranges utilizing established relationships between catchment-mean erosion rates and topography (local relief, hillslope gradients, and channel steepness) and combining it with a synthesis of previously published low-temperature thermochronologic data. Modern climate of the Caucasus region is assessed through an analysis of remotely-sensed data (TRMM and MODIS) and historical streamflow data. Because along-strike variation in either erosional efficiency or thickness of accreted material fail to explain our observations, we suggest that the topography of both the western Lesser and Greater Caucasus are partially supported by different geodynamic forces. In the western Lesser Caucasus, high relief portions of the landscape likely reflect uplift related to ongoing mantle lithosphere delamination beneath the neighboring East Anatolian Plateau. In the Greater Caucasus, maintenance of high topography in the western portion of the range despite extremely low (<2-4 mm/y) modern convergence rates may be related to dynamic topography from detachment of the north-directed Greater Caucasus slab or to a recent slowing of convergence rates. Large-scale spatial gradients in climate are not reflected in the topography of the Caucasus and do not seem to exert any significant control on the tectonics or structure of either range. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{HoffmannFeakinsBookhagenetal.2016, author = {Hoffmann, Bernd and Feakins, Sarah J. and Bookhagen, Bodo and Olen, Stephanie M. and Adhikari, Danda P. and Mainali, Janardan and Sachse, Dirk}, title = {Climatic and geomorphic drivers of plant organic matter transport in the Arun River, E Nepal}, series = {Earth \& planetary science letters}, volume = {452}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2016.07.008}, pages = {104 -- 114}, year = {2016}, language = {en} }