@phdthesis{Eckert2022, author = {Eckert, Silvia}, title = {Trait variation in changing environments: Assessing the role of DNA methylation in non-native plant species}, doi = {10.25932/publishup-56884}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-568844}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 134, CXXX}, year = {2022}, abstract = {The increasing introduction of non-native plant species may pose a threat to local biodiversity. However, the basis of successful plant invasion is not conclusively understood, especially since these plant species can adapt to the new range within a short period of time despite impoverished genetic diversity of the starting populations. In this context, DNA methylation is considered promising to explain successful adaptation mechanisms in the new habitat. DNA methylation is a heritable variation in gene expression without changing the underlying genetic information. Thus, DNA methylation is considered a so-called epigenetic mechanism, but has been studied in mainly clonally reproducing plant species or genetic model plants. An understanding of this epigenetic mechanism in the context of non-native, predominantly sexually reproducing plant species might help to expand knowledge in biodiversity research on the interaction between plants and their habitats and, based on this, may enable more precise measures in conservation biology. For my studies, I combined chemical DNA demethylation of field-collected seed material from predominantly sexually reproducing species and rearing offsping under common climatic conditions to examine DNA methylation in an ecological-evolutionary context. The contrast of chemically treated (demethylated) plants, whose variation in DNA methylation was artificially reduced, and untreated control plants of the same species allowed me to study the impact of this mechanism on adaptive trait differentiation and local adaptation. With this experimental background, I conducted three studies examining the effect of DNA methylation in non-native species along a climatic gradient and also between climatically divergent regions. The first study focused on adaptive trait differentiation in two invasive perennial goldenrod species, Solidago canadensis sensu latu and S. gigantea AITON, along a climate gradient of more than 1000 km in length in Central Europe. I found population differences in flowering timing, plant height, and biomass in the temporally longer-established S. canadensis, but only in the number of regrowing shoots for S. gigantea. While S. canadensis did not show any population structure, I was able to identify three genetic groups along this climatic gradient in S. gigantea. Surprisingly, demethylated plants of both species showed no change in the majority of traits studied. In the subsequent second study, I focused on the longer-established goldenrod species S. canadensis and used molecular analyses to infer spatial epigenetic and genetic population differences in the same specimens from the previous study. I found weak genetic but no epigenetic spatial variation between populations. Additionally, I was able to identify one genetic marker and one epigenetic marker putatively susceptible to selection. However, the results of this study reconfirmed that the epigenetic mechanism of DNA methylation appears to be hardly involved in adaptive processes within the new range in S. canadensis. Finally, I conducted a third study in which I reciprocally transplanted short-lived plant species between two climatically divergent regions in Germany to investigate local adaptation at the plant family level. For this purpose, I used four plant families (Amaranthaceae, Asteraceae, Plantaginaceae, Solanaceae) and here I additionally compared between non-native and native plant species. Seeds were transplanted to regions with a distance of more than 600 kilometers and had either a temperate-oceanic or a temperate-continental climate. In this study, some species were found to be maladapted to their own local conditions, both in non-native and native plant species alike. In demethylated individuals of the plant species studied, DNA methylation had inconsistent but species-specific effects on survival and biomass production. The results of this study highlight that DNA methylation did not make a substantial contribution to local adaptation in the non-native as well as native species studied. In summary, my work showed that DNA methylation plays a negligible role in both adaptive trait variation along climatic gradients and local adaptation in non-native plant species that either exhibit a high degree of genetic variation or rely mainly on sexual reproduction with low clonal propagation. I was able to show that the adaptive success of these non-native plant species can hardly be explained by DNA methylation, but could be a possible consequence of multiple introductions, dispersal corridors and meta-population dynamics. Similarly, my results illustrate that the use of plant species that do not predominantly reproduce clonally and are not model plants is essential to characterize the effect size of epigenetic mechanisms in an ecological-evolutionary context.}, language = {en} } @misc{MorenoRomeroProbstTrindadeetal.2020, author = {Moreno-Romero, Jordi and Probst, Aline V. and Trindade, In{\^e}s and Kalyanikrishna, and Engelhorn, Julia and Farrona, Sara}, title = {Looking At the Past and Heading to the Future}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51194}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-511942}, pages = {14}, year = {2020}, abstract = {In June 2019, more than a hundred plant researchers met in Cologne, Germany, for the 6th European Workshop on Plant Chromatin (EWPC). This conference brought together a highly dynamic community of researchers with the common aim to understand how chromatin organization controls gene expression, development, and plant responses to the environment. New evidence showing how epigenetic states are set, perpetuated, and inherited were presented, and novel data related to the three-dimensional organization of chromatin within the nucleus were discussed. At the level of the nucleosome, its composition by different histone variants and their specialized histone deposition complexes were addressed as well as the mechanisms involved in histone post-translational modifications and their role in gene expression. The keynote lecture on plant DNA methylation by Julie Law (SALK Institute) and the tribute session to Lars Hennig, honoring the memory of one of the founders of the EWPC who contributed to promote the plant chromatin and epigenetic field in Europe, added a very special note to this gathering. In this perspective article we summarize some of the most outstanding data and advances on plant chromatin research presented at this workshop.}, language = {en} } @phdthesis{Siebler2024, author = {Siebler, Lara}, title = {Identifying novel regulators of heat stress memory in Arabidopsis thaliana}, doi = {10.25932/publishup-63447}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-634477}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2024}, abstract = {Heat stress (HS) is a major abiotic stress that negatively affects plant growth and productivity. However, plants have developed various adaptive mechanisms to cope with HS, including the acquisition and maintenance of thermotolerance, which allows them to respond more effectively to subsequent stress episodes. HS memory includes type II transcriptional memory which is characterized by enhanced re-induction of a subset of HS memory genes upon recurrent HS. In this study, new regulators of HS memory in A. thaliana were identified through the characterization of rein mutants. The rein1 mutant carries a premature stop in CYCLIN-DEPENDENT-KINASE 8 (CDK8) which is part of the cyclin kinase module of the Mediator complex. Rein1 seedlings show impaired type II transcriptional memory in multiple heat-responsive genes upon re-exposure to HS. Additionally, the mutants exhibit a significant deficiency in HS memory at the physiological level. Interaction studies conducted in this work indicate that CDK8 associates with the memory HEAT SHOCK FACTORs HSAF2 and HSFA3. The results suggest that CDK8 plays a crucial role in HS memory in plants together with other memory HSFs, which may be potential targets of the CDK8 kinase function. Understanding the role and interaction network of the Mediator complex during HS-induced transcriptional memory will be an exciting aspect of future HS memory research. The second characterized mutant, rein2, was selected based on its strongly impaired pAPX2::LUC re-induction phenotype. In gene expression analysis, the mutant revealed additional defects in the initial induction of HS memory genes. Along with this observation, basal thermotolerance was impaired similarly as HS memory at the physiological level in rein2. Sequencing of backcrossed bulk segregants with subsequent fine mapping narrowed the location of REIN2 to a 1 Mb region on chromosome 1. This interval contains the At1g65440 gene, which encodes the histone chaperone SPT6L. SPT6L interacts with chromatin remodelers and bridges them to the transcription machinery to regulate nucleosome and Pol II occupancy around the transcriptional start site. The EMS-induced missense mutation in SPT6L may cause altered HS-induced gene expression in rein2, possibly triggered by changes in the chromatin environment resulting from altered histone chaperone function. Expanding research on screen-derived factors that modify type II transcriptional memory has the potential to enhance our understanding of HS memory in plants. Discovering connections between previously identified memory factors will help to elucidate the underlying network of HS memory. This knowledge can initiate new approaches to improve heat resilience in crops.}, language = {en} }