@phdthesis{Fischer2022, author = {Fischer, Axel}, title = {Investigating the impact of genomic compartments contributing to non-Mendelian inheritance based on high throughput sequencing data}, doi = {10.25932/publishup-54900}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549001}, school = {Universit{\"a}t Potsdam}, pages = {vii, 122}, year = {2022}, abstract = {More than a century ago the phenomenon of non-Mendelian inheritance (NMI), defined as any type of inheritance pattern in which traits do not segregate in accordance with Mendel's laws, was first reported. In the plant kingdom three genomic compartments, the nucleus, chloroplast, and mitochondrion, can participate in such a phenomenon. High-throughput sequencing (HTS) proved to be a key technology to investigate NMI phenomena by assembling and/or resequencing entire genomes. However, generation, analysis and interpretation of such datasets remain challenging by the multi-layered biological complexity. To advance our knowledge in the field of NMI, I conducted three studies involving different HTS technologies and implemented two new algorithms to analyze them. In the first study I implemented a novel post-assembly pipeline, called Semi-Automated Graph-Based Assembly Curator (SAGBAC), which visualizes non-graph-based assemblies as graphs, identifies recombinogenic repeat pairs (RRPs), and reconstructs plant mitochondrial genomes (PMG) in a semiautomated workflow. We applied this pipeline to assemblies of three Oenothera species resulting in a spatially folded and circularized model. This model was confirmed by PCR and Southern blot analyses and was used to predict a defined set of 70 PMG isoforms. With Illumina Mate Pair and PacBio RSII data, the stoichiometry of the RRPs was determined quantitatively differing up to three-fold. In the second study I developed a post-multiple sequence alignment algorithm, called correlation mapping (CM), which correlates segment-wise numbers of nucleotide changes to a numeric ascertainable phenotype. We applied this algorithm to 14 wild type and 18 mutagenized plastome assemblies within the Oenothera genus and identified two genes, accD and ycf2 that may cause the competitive behavior of plastid genotypes as plastids can be biparental inherited in Oenothera. Moreover, lipid composition of the plastid envelope membrane is affected by polymorphisms within these two genes. For the third study, I programmed a pipeline to investigate a NMI phenomenon, known as paramutation, in tomato by analyzing DNA and bisulfite sequencing data as well as microarray data. We identified the responsible gene (Solyc02g0005200) and were able to fully repress its caused phenotype by heterologous complementation with a paramutation insensitive transgene of the Arabidopsis thaliana orthologue. Additionally, a suppressor mutant shows a globally altered DNA methylation pattern and carries a large deletion leading to a gene fusion involving a histone deacetylase. In conclusion, my developed and implemented algorithms and data analysis pipelines are suitable to investigate NMI and led to novel insights about such phenomena by reconstructing PMGs (SAGBAC) as a requirement to study mitochondria-associated phenotypes, by identifying genes (CM) causing interplastidial competition as well by applying a DNA/Bisulfite-seq analysis pipeline to shed light in a transgenerational epigenetic inheritance phenomenon.}, language = {en} }