@article{KuhnertBaumannMeyeretal.2012, author = {Kuhnert, Oliver and Baumann, Otto and Meyer, Irene and Gr{\"a}f, Ralph}, title = {Functional characterization of CP148, a novel key component for centrosome integrity in Dictyostelium}, series = {Cellular and molecular life sciences}, volume = {69}, journal = {Cellular and molecular life sciences}, number = {11}, publisher = {Springer}, address = {Basel}, issn = {1420-682X}, doi = {10.1007/s00018-011-0904-2}, pages = {1875 -- 1888}, year = {2012}, abstract = {The centrosome consists of a layered core structure surrounded by a microtubule-nucleating corona. A tight linkage through the nuclear envelope connects the cytosolic centrosome with the clustered centromeres within the nuclear matrix. At G2/M the corona dissociates, and the core structure duplicates, yielding two spindle poles. CP148 is a novel coiled coil protein of the centrosomal corona. GFP-CP148 exhibited cell cycle-dependent presence and absence at the centrosome, which correlates with dissociation of the corona in prophase and its reformation in late telophase. During telophase, GFP-CP148 formed cytosolic foci, which coalesced and joined the centrosome. This explains the hypertrophic appearance of the corona upon strong overexpression of GFP-CP148. Depletion of CP148 by RNAi caused virtual loss of the corona and disorganization of interphase microtubules. Surprisingly, formation of the mitotic spindle and astral microtubules was unaffected. Thus, microtubule nucleation complexes associate with centrosomal core components through different means during interphase and mitosis. Furthermore, CP148 RNAi caused dispersal of centromeres and altered Sun1 distribution at the nuclear envelope, suggesting a role of CP148 in the linkage between centrosomes and centromeres. Taken together, CP148 is an essential factor for the formation of the centrosomal corona, which in turn is required for centrosome/centromere linkage.}, language = {en} } @phdthesis{Samereier2011, author = {Samereier, Matthias}, title = {Functional analyses of microtubule and centrosome-associated proteins in Dictyostelium discoideum}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52835}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Understanding the role of microtubule-associated proteins is the key to understand the complex mechanisms regulating microtubule dynamics. This study employs the model system Dictyostelium discoideum to elucidate the role of the microtubule-associated protein TACC (Transforming acidic coiled-coil) in promoting microtubule growth and stability. Dictyostelium TACC was localized at the centrosome throughout the entire cell cycle. The protein was also detected at microtubule plus ends, however, unexpectedly only during interphase but not during mitosis. The same cell cycle-dependent localization pattern was observed for CP224, the Dictyostelium XMAP215 homologue. These ubiquitous MAPs have been found to interact with TACC proteins directly and are known to act as microtubule polymerases and nucleators. This work shows for the first time in vivo that both a TACC and XMAP215 family protein can differentially localize to microtubule plus ends during interphase and mitosis. RNAi knockdown mutants revealed that TACC promotes microtubule growth during interphase and is essential for proper formation of astral microtubules in mitosis. In many organisms, impaired microtubule stability upon TACC depletion was explained by the failure to efficiently recruit the TACC-binding XMAP215 protein to centrosomes or spindle poles. By contrast, fluorescence recovery after photobleaching (FRAP) analyses conducted in this study demonstrate that in Dictyostelium recruitment of CP224 to centrosomes or spindle poles is not perturbed in the absence of TACC. Instead, CP224 could no longer be detected at the tips of microtubules in TACC mutant cells. This finding demonstrates for the first time in vivo that a TACC protein is essential for the association of an XMAP215 protein with microtubule plus ends. The GFP-TACC strains generated in this work also turned out to be a valuable tool to study the unusual microtubule dynamics in Dictyostelium. Here, microtubules exhibit a high degree of lateral bending movements but, in contrast most other organisms, they do not obviously undergo any growth or shrinkage events during interphase. Despite of that they are affected by microtubuledepolymerizing drugs such as thiabendazole or nocodazol which are thought to act solely on dynamic microtubules. Employing 5D-fluorescence live cell microscopy and FRAP analyses this study suggests Dictyostelium microtubules to be dynamic only in the periphery, while they are stable at the centrosome. In the recent years, the identification of yet unknown components of the Dictyostelium centrosome has made tremendous progress. A proteomic approach previously conducted by our group disclosed several uncharacterized candidate proteins, which remained to be verified as genuine centrosomal components. The second part of this study focuses on the investigation of three such candidate proteins, Cenp68, CP103 and the putative spindle assembly checkpoint protein Mad1. While a GFP-CP103 fusion protein could clearly be localized to isolated centrosomes that are free of microtubules, Cenp68 and Mad1 were found to associate with the centromeres and kinetochores, respectively. The investigation of Cenp68 included the generation of a polyclonal anti-Cenp68 antibody, the screening for interacting proteins and the generation of knockout mutants which, however, did not display any obvious phenotype. Yet, Cenp68 has turned out as a very useful marker to study centromere dynamics during the entire cell cycle. During mitosis, GFP-Mad1 localization strongly resembled the behavior of other Mad1 proteins, suggesting the existence of a yet uncharacterized spindle assembly checkpoint in Dictyostelium.}, language = {en} } @misc{MeyerKuhnertGraef2011, author = {Meyer, Irene and Kuhnert, Oliver and Gr{\"a}f, Ralph}, title = {Functional analyses of lissencephaly-related proteins in Dictyostelium}, series = {Seminars in cell \& developmental biology}, volume = {22}, journal = {Seminars in cell \& developmental biology}, number = {1}, publisher = {Elsevier}, address = {London}, issn = {1084-9521}, doi = {10.1016/j.semcdb.2010.10.007}, pages = {89 -- 96}, year = {2011}, abstract = {Lissencephaly is a severe brain developmental disease in human infants, which is usually caused by mutations in either of two genes, LIS1 and DCX. These genes encode proteins interacting with both the microtubule and the actin systems. Here, we review the implications of data on Dictyostelium LIS1 for the elucidation of LIS1 function in higher cells and emphasize the role of LIS1 and nuclear envelope proteins in nuclear positioning, which is also important for coordinated cell migration during neocortical development. Furthermore, for the first time we characterize Dictyostelium DCX, the only bona fide orthologue of human DCX outside the animal kingdom. We show that DCX functionally interacts with LIS1 and that both proteins have a cytoskeleton-independent function in chemotactic signaling during development. Dictyostelium LIS1 is also required for proper attachment of the centrosome to the nucleus and, thus, nuclear positioning, where the association of these two organelles has turned out to be crucial. It involves not only dynein and dynein-associated proteins such as LIS1 but also SUN proteins of the nuclear envelope. Analyses of Dictyostelium SUN1 mutants have underscored the importance of these proteins for the linkage of centrosomes and nuclei and for the maintenance of chromatin integrity. Taken together, we show that Dictyostelium amoebae, which provide a well-established model to study the basic aspects of chemotaxis, cell migration and development, are well suited for the investigation of the molecular and cell biological basis of developmental diseases such as lissencephaly.}, language = {en} } @article{GraefBatsiosMeyer2015, author = {Gr{\"a}f, Ralph and Batsios, Petros and Meyer, Irene}, title = {Evolution of centrosomes and the nuclear lamina: Amoebozoan assets}, series = {European journal of cell biology}, volume = {94}, journal = {European journal of cell biology}, number = {6}, publisher = {Elsevier}, address = {Jena}, issn = {0171-9335}, doi = {10.1016/j.ejcb.2015.04.004}, pages = {249 -- 256}, year = {2015}, abstract = {The current eukaryotic tree of life groups most eukaryotes into one of five supergroups, the Opisthokonta, Amoebozoa, Archaeplastida, Excavata and SAR (Stramenopile, Alveolata, Rhizaria). Molecular and comparative morphological analyses revealed that the last eukaryotic common ancestor (LECA) already contained a rather sophisticated equipment of organelles including a mitochondrion, an endomembrane system, a nucleus with a lamina, a microtubule-organizing center (MTOC), and a flagellar apparatus. Recent studies of MTOCs, basal bodies/centrioles, and nuclear envelope organization of organisms in different supergroups have clarified our picture of how the nucleus and MTOCs co-evolved from LECA to extant eukaryotes. In this review we summarize these findings with special emphasis on valuable contributions of research on a lamin-like protein, nuclear envelope proteins, and the MTOC in the amoebozoan model organism Dictyostelium discoideum. (C) 2015 Elsevier GmbH. All rights reserved.}, language = {en} } @article{PutzlerMeyerGraef2016, author = {Putzler, Sascha and Meyer, Irene and Gr{\"a}f, Ralph}, title = {CP91 is a component of the Dictyostelium centrosome involved in centrosome biogenesis}, series = {European journal of cell biology}, volume = {95}, journal = {European journal of cell biology}, publisher = {Royal Society}, address = {Jena}, issn = {0171-9335}, doi = {10.1016/j.ejcb.2016.03.001}, pages = {124 -- 135}, year = {2016}, abstract = {The Dictyostelium centrosome is a model for acentriolar centrosomes and it consists of a three-layered core structure surrounded by a corona harboring microtubule nucleation complexes. Its core structure duplicates once per cell cycle at the G2/M transition. Through proteomic analysis of isolated centrosomes we have identified CP91, a 91-kDa coiled coil protein that was localized at the centrosomal core structure. While GFP-CP91 showed almost no mobility in FRAP experiments during interphase, both GFP-CP91 and endogenous CP91 dissociated during mitosis and were absent from spindle poles from late prophase to anaphase. Since this behavior correlates with the disappearance of the central layer upon centrosome duplication, CP91 is a putative component of this layer. When expressed as GFP-fusions, CP91 fragments corresponding to the central coiled coil domain and the preceding N-terminal part (GFP-CP91cc and GFP-CP91N, respectively) also localized to the centrosome but did not show the mitotic redistribution of the full length protein suggesting a regulatory role of the C-terminal domain. Expression of all GFP-fusion proteins suppressed expression of endogenous CP91 and elicited supernumerary centrosomes. This was also very prominent upon depletion of CP91 by RNAi. Additionally, CP91-RNAi cells exhibited heavily increased ploidy due to severe defects in chromosome segregation along with increased cell size and defects in the abscission process during cytokinesis. Our results indicate that CP91 is a central centrosomal core component required for centrosomal integrity, proper centrosome biogenesis and, independently, for abscission during cytokinesis. (c) 2016 Elsevier GmbH. All rights reserved.}, language = {en} } @article{KuhnertBaumannMeyeretal.2012, author = {Kuhnert, Oliver and Baumann, Otto and Meyer, Irene and Gr{\"a}f, Ralph}, title = {CP55, a novel key component of centrosomal organization in dictyostelium}, series = {Cellular and molecular life sciences}, volume = {69}, journal = {Cellular and molecular life sciences}, number = {21}, publisher = {Springer}, address = {Basel}, issn = {1420-682X}, doi = {10.1007/s00018-012-1040-3}, pages = {3651 -- 3664}, year = {2012}, abstract = {Dictyostelium centrosomes consist of a layered core structure surrounded by a microtubule-nucleating corona. At the G2/M transition, the corona dissociates and the core structure duplicates, yielding two spindle pole bodies. Finally, in telophase, the spindle poles mature into two new, complete centrosomes. CP55 was identified in a centrosomal proteome analysis. It is a component of the centrosomal core structure, and persists at the centrosome throughout the entire cell cycle. FRAP experiments revealed that during interphase the majority of centrosomal GFP-CP55 is immobile, which indicates a structural task of CP55 at the centrosome. The CP55null mutant is characterized by increased ploidy, a less structured, slightly enlarged corona, and by supernumerary, cytosolic MTOCs, containing only corona proteins and lacking a core structure. Live cell imaging showed that supernumerary MTOCs arise in telophase. Lack of CP55 also caused premature recruitment of the corona organizer CP148 to mitotic spindle poles, already in metaphase instead of telophase. Forces transmitted through astral microtubules may expel prematurely acquired or loosely attached corona fragments into the cytosol, where they act as independent MTOCs. CP55null cells were also impaired in growth, most probably due to difficulties in centrosome splitting during prophase. Furthermore, although they were still capable of phagocytosis, they appeared unable to utilize phagocytosed nutrients. This inability may be attributed to their partially disorganized Golgi apparatus.}, language = {en} } @article{MeyerPeterBatsiosetal.2017, author = {Meyer, Irene and Peter, Tatjana and Batsios, Petros and Kuhnert, Oliver and Krueger-Genge, Anne and Camurca, Carl and Gr{\"a}f, Ralph}, title = {CP39, CP75 and CP91 are major structural components of the Dictyostelium}, series = {European journal of cell biology}, volume = {96}, journal = {European journal of cell biology}, publisher = {Elsevier}, address = {Jena}, issn = {0171-9335}, doi = {10.1016/j.eicb.2017.01.004}, pages = {119 -- 130}, year = {2017}, abstract = {The acentriolar Dictyostelium centrosome is a nucleus-associated body consisting of a core structure with three plaque-like layers, which are surrounded by a microtubule-nucleating corona. The core duplicates once per cell cycle at the G2/M transition, whereby its central layer disappears and the two outer layers form the mitotic spindle poles. Through proteomic analysis of isolated centrosomes, we have identified CP39 and CP75, two essential components of the core structure. Both proteins can be assigned to the central core layer as their centrosomal presence is correlated to the disappearance and reappearance of the central core layer in the course of centrosome duplication. Both proteins contain domains with centrosome-binding activity in their N- and C-terminal halves, whereby the respective N-terminal half is required for cell cycle-dependent regulation. CP39 is capable of self-interaction and GFP-CP39 overexpression elicited supernumerary microtubule-organizing centers and pre-centrosomal cytosolic clusters. Underexpression stopped cell growth and reversed the MTOC amplification phenotype. In contrast, in case of CP75 underexpression of the protein by RNAi treatment elicited supernumerary MTOCs. In addition, CP75RNAi affects correct chromosome segregation and causes co-depletion of CP39 and CP91, another central core layer component. CP39 and CP75 interact with each other directly in a yeast two-hybrid assay. Furthermore, CP39, CP75 and CP91 mutually interact in a proximity-dependent biotin identification (BioID) assay. Our data indicate that these three proteins are all required for proper centrosome biogenesis and make up the major structural components of core structure's central layer.}, language = {en} } @phdthesis{Kuhnert2012, author = {Kuhnert, Oliver}, title = {Charakterisierung der neuen centrosomalen Proteine CP148 und CP55 in Dictyostelium discoideum}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59949}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Das im Cytosol liegende Dictyostelium Centrosom ist aus einer geschichteten Core-Region aufgebaut, die von einer Mikrotubuli-nukleierenden Corona umgeben ist. Zudem ist es {\"u}ber eine spezifische Verbindung eng an den Kern gekn{\"u}pft und durch die Kernmembran hindurch mit den geclusterten Centromeren verbunden. Beim G2/M {\"U}bergang dissoziiert die Corona vom Centrosom und der Core verdoppelt sich so dass zwei Spindelpole entstehen. CP55 und CP148 wurden in einer Proteom-Analyse des Centrosoms identifiziert. CP148 ist ein neues coiled-coil Protein der centrosomalen Corona. Es zeigt eine zellzyklusabh{\"a}ngige An- und Abwesenheit am Centrosom, die mit der Dissoziation der Corona in der Prophase und ihrer Neubildung in der Telophase korreliert. W{\"a}hrend der Telophase erschienen in GFP-CP148 exprimierenden Zellen viele, kleine GFP-CP148-Foci im Cytoplasma, die zum Teil miteinander fusionierten und zum Centrosom wanderten. Daraus resultierte eine hypertrophe Corona in Zellen mit starker GFP-CP148 {\"U}berexpression. Ein Knockdown von CP148 durch RNAi f{\"u}hrte zu einem Verlust der Corona und einem ungeordneten Interphase Mikrotubuli-Cytoskelett. Die Bildung der mitotischen Spindel und der astralen Mikrotubuli blieb davon unbeeinflusst. Das bedeutet, dass die Mikrotubuli-Nukleationskomplexe w{\"a}hrend der Interphase und Mitose {\"u}ber verschiedene Wege mit dem Core assoziiert sind. Des Weiteren bewirkte der Knockdown eine Dispersion der Centromere sowie eine ver{\"a}nderte Sun1 Lokalisation in der Kernh{\"u}lle. Somit spielt CP148 ebenso eine Rolle in der Centrosomen-Centromer-Verbindung. Zusammengefasst ist CP148 ein essentielles Protein f{\"u}r die Bildung und Organisation der Corona, welche wiederum f{\"u}r die Centrosom/Centromer Verbindung ben{\"o}tigt wird. CP55 wurde als Protein der Core-Region identifiziert und verbleibt w{\"a}hrend des Zellzyklus am Centrosom. Dort besitzt es strukturelle Aufgaben, da die Mehrheit der GFP-CP55 Molek{\"u}le in der Interphase keine Mobilit{\"a}t zeigten. Die GFP-CP55 {\"U}berexpression f{\"u}hrte zur Bildung von {\"u}berz{\"a}hligen Centrosomen mit der {\"u}blichen Ausstattung an Markerproteinen der Corona und des Cores. CP55 Knockout-Zellen waren durch eine erh{\"o}hte Ploidie, eine weniger strukturierte und leicht vergr{\"o}ßerte Corona sowie zus{\"a}tzliche cytosolische Mikrotubuli-organisierende Zentren charakterisiert. Letztere entstanden in der Telophase und enthielten nur Corona- aber keine Core-Proteine. In CP55 k/o Zellen erfolgte die Rekrutierung des Corona-Organisators CP148 an den Spindelpol bereits in der fr{\"u}hen Metaphase anstatt, wie {\"u}blich, erst in der Telophase. Außerdem zeigten die Knockout-Zellen Wachstumsdefekte, deren Grund vermutlich Schwierigkeiten bei der Centrosomenverdopplung in der Prophase durch das Fehlen von CP55 waren. Dar{\"u}ber hinaus konnten die Knockout-Zellen phagozytiertes Material nicht verwerten, obwohl der Vorgang der Phagozytose nicht beeintr{\"a}chtigt war. Dieser Defekt kann dem im CP55 k/o auftretenden dispergierten Golgi-Apparat zugeschrieben werden.}, language = {de} } @article{SamereierBaumannMeyeretal.2011, author = {Samereier, Matthias and Baumann, Otto and Meyer, Irene and Gr{\"a}f, Ralph}, title = {Analysis of dictyostelium TACC reveals differential interactions with CP224 and unusual dynamics of dictyostelium microtubules}, series = {Cellular and molecular life sciences}, volume = {68}, journal = {Cellular and molecular life sciences}, number = {2}, publisher = {Springer}, address = {Basel}, issn = {1420-682X}, doi = {10.1007/s00018-010-0453-0}, pages = {275 -- 287}, year = {2011}, abstract = {We have localized TACC to the microtubule-nucleating centrosomal corona and to microtubule plus ends. Using RNAi we proved that Dictyostelium TACC promotes microtubule growth during interphase and mitosis. For the first time we show in vivo that both TACC and XMAP215 family proteins can be differentially localized to microtubule plus ends during interphase and mitosis and that TACC is mainly required for recruitment of an XMAP215-family protein to interphase microtubule plus ends but not for recruitment to centrosomes and kinetochores. Moreover, we have now a marker to study dynamics and behavior of microtubule plus ends in living Dictyostelium cells. In a combination of live cell imaging of microtubule plus ends and fluorescence recovery after photobleaching (FRAP) experiments of GFP-alpha-tubulin cells we show that Dictyostelium microtubules are dynamic only in the cell periphery, while they remain stable at the centrosome, which also appears to harbor a dynamic pool of tubulin dimers.}, language = {en} } @article{TikhonenkoMagidsonGraefetal.2013, author = {Tikhonenko, Irina and Magidson, Valentin and Gr{\"a}f, Ralph and Khodjakov, Alexey and Koonce, Michael P.}, title = {A kinesin-mediated mechanism that couples centrosomes to nuclei}, series = {Cellular and molecular life sciences}, volume = {70}, journal = {Cellular and molecular life sciences}, number = {7}, publisher = {Springer}, address = {Basel}, issn = {1420-682X}, doi = {10.1007/s00018-012-1205-0}, pages = {1285 -- 1296}, year = {2013}, abstract = {The M-type kinesin isoform, Kif9, has recently been implicated in maintaining a physical connection between the centrosome and nucleus in Dictyostelium discoideum. However, the mechanism by which Kif9 functions to link these two organelles remains obscure. Here we demonstrate that the Kif9 protein is localized to the nuclear envelope and is concentrated in the region underlying the centrosome point of attachment. Nuclear anchorage appears mediated through a specialized transmembrane domain located in the carboxyl terminus. Kif9 interacts with microtubules in in vitro binding assays and effects an endwise depolymerization of the polymer. These results suggest a model whereby Kif9 is anchored to the nucleus and generates a pulling force that reels the centrosome up against the nucleus. This is a novel activity for a kinesin motor, one important for progression of cells into mitosis and to ensure centrosome-nuclear parity in a multinuclear environment.}, language = {en} }