@misc{SchmidtWalzJonesetal.2016, author = {Schmidt, Katja and Walz, Ariane and Jones, Isobel and Metzger, Marc J.}, title = {The sociocultural value of upland regions in the vicinity of cities in comparison with urban green spaces}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {920}, issn = {1866-8372}, doi = {10.25932/publishup-44201}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442010}, pages = {465 -- 474}, year = {2016}, abstract = {Mountain and upland regions provide a wide range of ecosystem services to residents and visitors. While ecosystem research in mountain regions is on the rise, the linkages between sociocultural benefits and ecological systems remain little explored. Mountainous regions close to urban areas provide numerous benefits to a large number of individuals, suggesting a high social value, particularly for cultural ecosystem services. We explored and compared visitors' valuation of ecosystem services in the Pentland Hills, an upland range close to the city of Edinburgh, Scotland, and urban green spaces within Edinburgh. Based on 715 responses to user surveys in both study areas, we identified intense use and high social value for both areas. Several ecosystem services were perceived as equally important in both areas, including many cultural ecosystem services. Significant differences were revealed in the value of physically using nature, which Pentland Hills users rated more highly than those in the urban green spaces, and of mitigation of pollutants and carbon sequestration, for which the urban green spaces were valued more highly. Major differences were further identified for preferences in future land management, with nature-oriented management preferred by about 57\% of the interviewees in the Pentland Hills, compared to 31\% in the urban parks. The study highlights the substantial value of upland areas in close vicinity to a city for physically using and experiencing nature, with a strong acceptance of nature conservation.}, language = {en} } @misc{RaatzBacchiPirhoferWalzletal.2019, author = {Raatz, Larissa and Bacchi, Nina and Pirhofer Walzl, Karin and Glemnitz, Michael and M{\"u}ller, Marina E. H. and Jasmin Radha, Jasmin and Scherber, Christoph}, title = {How much do we really lose?}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {811}, issn = {1866-8372}, doi = {10.25932/publishup-44331}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-443313}, pages = {13}, year = {2019}, abstract = {Natural landscape elements (NLEs) in agricultural landscapes contribute to biodiversity and ecosystem services, but are also regarded as an obstacle for large-scale agricultural production. However, the effects of NLEs on crop yield have rarely been measured. Here, we investigated how different bordering structures, such as agricultural roads, field-to-field borders, forests, hedgerows, and kettle holes, influence agricultural yields. We hypothesized that (a) yield values at field borders differ from mid-field yields and that (b) the extent of this change in yields depends on the bordering structure. We measured winter wheat yields along transects with log-scaled distances from the border into the agricultural field within two intensively managed agricultural landscapes in Germany (2014 near G{\"o}ttingen, and 2015-2017 in the Uckermark). We observed a yield loss adjacent to every investigated bordering structure of 11\%-38\% in comparison with mid-field yields. However, depending on the bordering structure, this yield loss disappeared at different distances. While the proximity of kettle holes did not affect yields more than neighboring agricultural fields, woody landscape elements had strong effects on winter wheat yields. Notably, 95\% of mid-field yields could already be reached at a distance of 11.3 m from a kettle hole and at a distance of 17.8 m from hedgerows as well as forest borders. Our findings suggest that yield losses are especially relevant directly adjacent to woody landscape elements, but not adjacent to in-field water bodies. This highlights the potential to simultaneously counteract yield losses close to the field border and enhance biodiversity by combining different NLEs in agricultural landscapes such as creating strips of extensive grassland vegetation between woody landscape elements and agricultural fields. In conclusion, our results can be used to quantify ecocompensations to find optimal solutions for the delivery of productive and regulative ecosystem services in heterogeneous agricultural landscapes.}, language = {en} } @phdthesis{Schmidt2019, author = {Schmidt, Martin}, title = {Fragmentation of landscapes: modelling ecosystem services of transition zones}, doi = {10.25932/publishup-44294}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442942}, school = {Universit{\"a}t Potsdam}, pages = {XV, 103}, year = {2019}, abstract = {For millennia, humans have affected landscapes all over the world. Due to horizontal expansion, agriculture plays a major role in the process of fragmentation. This process is caused by a substitution of natural habitats by agricultural land leading to agricultural landscapes. These landscapes are characterized by an alternation of agriculture and other land use like forests. In addition, there are landscape elements of natural origin like small water bodies. Areas of different land use are beside each other like patches, or fragments. They are physically distinguishable which makes them look like a patchwork from an aerial perspective. These fragments are each an own ecosystem with conditions and properties that differ from their adjacent fragments. As open systems, they are in exchange of information, matter and energy across their boundaries. These boundary areas are called transition zones. Here, the habitat properties and environmental conditions are altered compared to the interior of the fragments. This changes the abundance and the composition of species in the transition zones, which in turn has a feedback effect on the environmental conditions. The literature mainly offers information and insights on species abundance and composition in forested transition zones. Abiotic effects, the gradual changes in energy and matter, received less attention. In addition, little is known about non-forested transition zones. For example, the effects on agricultural yield in transition zones of an altered microclimate, matter dynamics or different light regimes are hardly researched or understood. The processes in transition zones are closely connected with altered provisioning and regulating ecosystem services. To disentangle the mechanisms and to upscale the effects, models can be used. My thesis provides insights into these topics: literature was reviewed and a conceptual framework for the quantitative description of gradients of matter and energy in transition zones was introduced. The results of measurements of environmental gradients like microclimate, aboveground biomass and soil carbon and nitrogen content are presented that span from within the forest into arable land. Both the measurements and the literature review could not validate a transition zone of 100 m for abiotic effects. Although this value is often reported and used in the literature, it is likely to be smaller. Further, the measurements suggest that on the one hand trees in transition zones are smaller compared to those in the interior of the fragments, while on the other hand less biomass was measured in the arable lands' transition zone. These results support the hypothesis that less carbon is stored in the aboveground biomass in transition zones. The soil at the edge (zero line) between adjacent forest and arable land contains more nitrogen and carbon content compared to the interior of the fragments. One-year measurements in the transition zone also provided evidence that microclimate is different compared to the fragments' interior. To predict the possible yield decreases that transition zones might cause, a modelling approach was developed. Using a small virtual landscape, I modelled the effect of a forest fragment shading the adjacent arable land and the effects of this on yield using the MONICA crop growth model. In the transition zone yield was less compared to the interior due to shading. The results of the simulations were upscaled to the landscape level and exemplarily calculated for the arable land of a whole region in Brandenburg, Germany. The major findings of my thesis are: (1) Transition zones are likely to be much smaller than assumed in the scientific literature; (2) transition zones aren't solely a phenomenon of forested ecosystems, but significantly extend into arable land as well; (3) empirical and modelling results show that transition zones encompass biotic and abiotic changes that are likely to be important to a variety of agricultural landscape ecosystem services.}, language = {en} } @misc{WilskeEccardZistlSchlingmannetal.2015, author = {Wilske, Burkhard and Eccard, Jana and Zistl-Schlingmann, Marcus and Hohmann, Maximilian and Methler, Annabel and Herde, Antje and Liesenjohann, Thilo and Dannenmann, Michael and Butterbach-Bahl, Klaus and Breuer, Lutz}, title = {Effects of short term bioturbation by common voles on biogeochemical soil variables}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {499}, issn = {1866-8372}, doi = {10.25932/publishup-40837}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408375}, pages = {19}, year = {2015}, abstract = {Bioturbation contributes to soil formation and ecosystem functioning. With respect to the active transport of matter by voles, bioturbation may be considered as a very dynamic process among those shaping soil formation and biogeochemistry. The present study aimed at characterizing and quantifying the effects of bioturbation by voles on soil water relations and carbon and nitrogen stocks. Bioturbation effects were examined based on a field set up in a luvic arenosol comprising of eight 50 x 50 m enclosures with greatly different numbers of common vole (Microtus arvalis L., ca. 35-150 individuals ha(-1) mth(-1)). Eleven key soil variables were analyzed: bulk density, infiltration rate, saturated hydraulic conductivity, water holding capacity, contents of soil organic carbon (SOC) and total nitrogen (N), CO2 emission potential, C/N ratio, the stable isotopic signatures of C-13 and N-15, and pH. The highest vole densities were hypothesized to cause significant changes in some variables within 21 months. Results showed that land history had still a major influence, as eight key variables displayed an additional or sole influence of topography. However, the delta N-15 at depths of 10-20 and 20-30 cm decreased and increased with increasing vole numbers, respectively. Also the CO2 emission potential from soil collected at a depth of 15-30 cm decreased and the C/N ratio at 5-10 cm depth narrowed with increasing vole numbers. These variables indicated the first influence of voles on the respective mineralization processes in some soil layers. Tendencies of vole activity homogenizing SOC and N contents across layers were not significant. The results of the other seven key variables did not confirm significant effects of voles. Thus overall, we found mainly a first response of variables that are indicative for changes in biogeochemical dynamics but not yet of those representing changes in pools.}, language = {en} }