@misc{SchippersNguyenLuetal.2012, author = {Schippers, Jos H. M. and Nguyen, Hung M. and Lu, Dandan and Schmidt, Romy and M{\"u}ller-R{\"o}ber, Bernd}, title = {ROS homeostasis during development: an evolutionary conserved strategy}, series = {Cellular and molecular life sciences}, volume = {69}, journal = {Cellular and molecular life sciences}, number = {19}, publisher = {Springer}, address = {Basel}, issn = {1420-682X}, doi = {10.1007/s00018-012-1092-4}, pages = {3245 -- 3257}, year = {2012}, abstract = {The balance between cellular proliferation and differentiation is a key aspect of development in multicellular organisms. Recent studies on Arabidopsis roots revealed distinct roles for different reactive oxygen species (ROS) in these processes. Modulation of the balance between ROS in proliferating cells and elongating cells is controlled at least in part at the transcriptional level. The effect of ROS on proliferation and differentiation is not specific for plants but appears to be conserved between prokaryotic and eukaryotic life forms. The ways in which ROS is received and how it affects cellular functioning is discussed from an evolutionary point of view. The different redox-sensing mechanisms that evolved ultimately result in the activation of gene regulatory networks that control cellular fate and decision-making. This review highlights the potential common origin of ROS sensing, indicating that organisms evolved similar strategies for utilizing ROS during development, and discusses ROS as an ancient universal developmental regulator.}, language = {en} } @misc{deVinuesaAbdelilahSeyfriedKnausetal.2016, author = {de Vinuesa, Amaya Garcia and Abdelilah-Seyfried, Salim and Knaus, Petra and Zwijsen, An and Bailly, Sabine}, title = {BMP signaling in vascular biology and dysfunction}, series = {New journal of physics : the open-access journal for physics}, volume = {27}, journal = {New journal of physics : the open-access journal for physics}, publisher = {Elsevier}, address = {Oxford}, issn = {1359-6101}, doi = {10.1016/j.cytogfr.2015.12.005}, pages = {65 -- 79}, year = {2016}, abstract = {The vascular system is critical for developmental growth, tissue homeostasis and repair but also for tumor development. Bone morphogenetic protein (BMP) signaling has recently emerged as a fundamental pathway of the endothelium by regulating cardiovascular and lymphatic development and by being causative for several vascular dysfunctions. Two vascular disorders have been directly linked to impaired BMP signaling: pulmonary arterial hypertension and hereditary hemorrhagic telangiectasia. Endothelial BMP signaling critically depends on the cellular context, which includes among others vascular heterogeneity, exposure to flow, and the intertwining with other signaling cascades (Notch, WNT, Hippo and hypoxia). The purpose of this review is to highlight the most recent findings illustrating the clear need for reconsidering the role of BMPs in vascular biology. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} }