@phdthesis{Engels2004, author = {Engels, Eva}, title = {Adverb placement : an optimality theoretic approach}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-2453}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Adverb positioning is guided by syntactic, semantic, and pragmatic considerations and is subject to cross-linguistic as well as language-specific variation. The goal of the thesis is to identify the factors that determine adverb placement in general (Part I) as well as in constructions in which the adverb's sister constituent is deprived of its phonetic material by movement or ellipsis (gap constructions, Part II) and to provide an Optimality Theoretic approach to the contrasts in the effects of these factors on the distribution of adverbs in English, French, and German. In Optimality Theory (Prince \& Smolensky 1993), grammaticality is defined as optimal satisfaction of a hierarchy of violable constraints: for a given input, a set of output candidates are produced out of which that candidate is selected as grammatical output which optimally satisfies the constraint hierarchy. Since grammaticality crucially relies on the hierarchic relations of the constraints, cross-linguistic variation can be traced back to differences in the language-specific constraint rankings. Part I shows how diverse phenomena of adverb placement can be captured by corresponding constraints and their relative rankings: - contrasts in the linearization of adverbs and verbs/auxiliaries in English and French - verb placement in German and the filling of the prefield position - placement of focus-sensitive adverbs - fronting of topical arguments and adverbs Part II extends the analysis to a particular phenomenon of adverb positioning: the avoidance of adverb attachment to a phonetically empty constituent (gap). English and French are similar in that the acceptability of pre-gap adverb placement depends on the type of adverb, its scope, and the syntactic construction (English: wh-movement vs. topicalization / VP Fronting / VP Ellipsis, inverted vs. non-inverted clauses; French: CLLD vs. Cleft, simple vs. periphrastic tense). Yet, the two languages differ in which strategies a specific type of adverb may pursue to escape placement in front of a certain type of gap. In contrast to English and French, placement of an adverb in front of a gap never gives rise to ungrammaticality in German. Rather, word ordering has to obey the syntactic, semantic, and pragmatic principles discussed in Part I; whether or not it results in adverb attachment to a phonetically empty constituent seems to be irrelevant: though constraints are active in every language, the emergence of a visible effect of their requirements in a given language depends on their relative ranking. The complex interaction of the diverse factors as well as their divergent effects on adverb placement in the various languages are accounted for by the universal constraints and their language-specific hierarchic relations in the OT framework.}, subject = {Adverb}, language = {en} } @book{Dambacher2010, author = {Dambacher, Michael}, title = {Bottom-up and top-down processes in reading : influences of frequency and predictability on event-related potentials and eye movements}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-059-5}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-42024}, publisher = {Universit{\"a}t Potsdam}, pages = {239}, year = {2010}, abstract = {In reading, word frequency is commonly regarded as the major bottom-up determinant for the speed of lexical access. Moreover, language processing depends on top-down information, such as the predictability of a word from a previous context. Yet, however, the exact role of top-down predictions in visual word recognition is poorly understood: They may rapidly affect lexical processes, or alternatively, influence only late post-lexical stages. To add evidence about the nature of top-down processes and their relation to bottom-up information in the timeline of word recognition, we examined influences of frequency and predictability on event-related potentials (ERPs) in several sentence reading studies. The results were related to eye movements from natural reading as well as to models of word recognition. As a first and major finding, interactions of frequency and predictability on ERP amplitudes consistently revealed top-down influences on lexical levels of word processing (Chapters 2 and 4). Second, frequency and predictability mediated relations between N400 amplitudes and fixation durations, pointing to their sensitivity to a common stage of word recognition; further, larger N400 amplitudes entailed longer fixation durations on the next word, a result providing evidence for ongoing processing beyond a fixation (Chapter 3). Third, influences of presentation rate on ERP frequency and predictability effects demonstrated that the time available for word processing critically co-determines the course of bottom-up and top-down influences (Chapter 4). Fourth, at a near-normal reading speed, an early predictability effect suggested the rapid comparison of top-down hypotheses with the actual visual input (Chapter 5). The present results are compatible with interactive models of word recognition assuming that early lexical processes depend on the concerted impact of bottom-up and top-down information. We offered a framework that reconciles the findings on a timeline of word recognition taking into account influences of frequency, predictability, and presentation rate (Chapter 4).}, language = {en} } @phdthesis{Hohenstein2013, author = {Hohenstein, Sven}, title = {Eye movements and processing of semantic information in the parafovea during reading}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70363}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {When we read a text, we obtain information at different levels of representation from abstract symbols. A reader's ultimate aim is the extraction of the meaning of the words and the text. The reserach of eye movements in reading covers a broad range of psychological systems, ranging from low-level perceptual and motor processes to high-level cognition. Reading of skilled readers proceeds highly automatic, but is a complex phenomenon of interacting subprocesses at the same time. The study of eye movements during reading offers the possibility to investigate cognition via behavioral measures during the excercise of an everyday task. The process of reading is not limited to the directly fixated (or foveal) word but also extends to surrounding (or parafoveal) words, particularly the word to the right of the gaze position. This process may be unconscious, but parafoveal information is necessary for efficient reading. There is an ongoing debate on whether processing of the upcoming word encompasses word meaning (or semantics) or only superficial features. To increase the knowledge about how the meaning of one word helps processing another word, seven experiments were conducted. In these studies, words were exachanged during reading. The degree of relatedness between the word to the right of the currently fixated one and the word subsequently fixated was experimentally manipulated. Furthermore, the time course of the parafoveal extraction of meaning was investigated with two different approaches, an experimental one and a statistical one. As a major finding, fixation times were consistently lower if a semantically related word was presented compared to the presence of an unrelated word. Introducing an experimental technique that allows controlling the duration for which words are available, the time course of processing and integrating meaning was evaluated. Results indicated both facilitation and inhibition due to relatedness between the meanings of words. In a more natural reading situation, the effectiveness of the processing of parafoveal words was sometimes time-dependent and substantially increased with shorter distances between the gaze position and the word. Findings are discussed with respect to theories of eye-movement control. In summary, the results are more compatible with models of distributed word processing. The discussions moreover extend to language differences and technical issues of reading research.}, language = {en} } @phdthesis{Gendt2011, author = {Gendt, Anja}, title = {Eye movements under the control of working memory : the challenge of a reading-span task}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69224}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {During reading oculomotor processes guide the eyes over the text. The visual information recorded is accessed, evaluated and processed. Only by retrieving the meaning of a word from the long-term memory, as well as through the connection and storage of the information about each individual word, is it possible to access the semantic meaning of a sentence. Therefore memory, and here in particular working memory, plays a pivotal role in the basic processes of reading. The following dissertation investigates to what extent different demands on memory and memory capacity have an effect on eye movement behavior while reading. The frequently used paradigm of the reading span task, in which test subjects read and evaluate individual sentences, was used for the experimental review of the research questions. The results speak for the fact that working memory processes have a direct effect on various eye movement measurements. Thus a high working memory load, for example, reduced the perceptual span while reading. The lower the individual working memory capacity of the reader was, the stronger was the influence of the working memory load on the processing of the sentence.}, language = {en} } @misc{KruegelVituEngbert2012, author = {Kr{\"u}gel, Andr{\´e} and Vitu, Fran{\c{c}}oise and Engbert, Ralf}, title = {Fixation positions after skipping saccades}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {856}, issn = {1866-8372}, doi = {10.25932/publishup-43288}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432887}, pages = {1556 -- 1561}, year = {2012}, abstract = {During reading, saccadic eye movements are generated to shift words into the center of the visual field for lexical processing. Recently, Krugel and Engbert (Vision Research 50:1532-1539, 2010) demonstrated that within-word fixation positions are largely shifted to the left after skipped words. However, explanations of the origin of this effect cannot be drawn from normal reading data alone. Here we show that the large effect of skipped words on the distribution of within-word fixation positions is primarily based on rather subtle differences in the low-level visual information acquired before saccades. Using arrangements of "x" letter strings, we reproduced the effect of skipped character strings in a highly controlled single-saccade task. Our results demonstrate that the effect of skipped words in reading is the signature of a general visuomotor phenomenon. Moreover, our findings extend beyond the scope of the widely accepted range-error model, which posits that within-word fixation positions in reading depend solely on the distances of target words. We expect that our results will provide critical boundary conditions for the development of visuomotor models of saccade planning during reading.}, language = {en} } @misc{HohensteinMatuschekKliegl2016, author = {Hohenstein, Sven and Matuschek, Hannes and Kliegl, Reinhold}, title = {Linked linear mixed models}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {552}, issn = {1866-8364}, doi = {10.25932/publishup-42828}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428281}, pages = {15}, year = {2016}, abstract = {The complexity of eye-movement control during reading allows measurement of many dependent variables, the most prominent ones being fixation durations and their locations in words. In current practice, either variable may serve as dependent variable or covariate for the other in linear mixed models (LMMs) featuring also psycholinguistic covariates of word recognition and sentence comprehension. Rather than analyzing fixation location and duration with separate LMMs, we propose linking the two according to their sequential dependency. Specifically, we include predicted fixation location (estimated in the first LMM from psycholinguistic covariates) and its associated residual fixation location as covariates in the second, fixation-duration LMM. This linked LMM affords a distinction between direct and indirect effects (mediated through fixation location) of psycholinguistic covariates on fixation durations. Results confirm the robustness of distributed processing in the perceptual span. They also offer a resolution of the paradox of the inverted optimal viewing position (IOVP) effect (i.e., longer fixation durations in the center than at the beginning and end of words) although the opposite (i.e., an OVP effect) is predicted from default assumptions of psycholinguistic processing efficiency: The IOVP effect in fixation durations is due to the residual fixation-location covariate, presumably driven primarily by saccadic error, and the OVP effect (at least the left part of it) is uncovered with the predicted fixation-location covariate, capturing the indirect effects of psycholinguistic covariates. We expect that linked LMMs will be useful for the analysis of other dynamically related multiple outcomes, a conundrum of most psychonomic research.}, language = {en} } @phdthesis{Rabe2024, author = {Rabe, Maximilian Michael}, title = {Modeling the interaction of sentence processing and eye-movement control in reading}, doi = {10.25932/publishup-62279}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-622792}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 171}, year = {2024}, abstract = {The evaluation of process-oriented cognitive theories through time-ordered observations is crucial for the advancement of cognitive science. The findings presented herein integrate insights from research on eye-movement control and sentence comprehension during reading, addressing challenges in modeling time-ordered data, statistical inference, and interindividual variability. Using kernel density estimation and a pseudo-marginal likelihood for fixation durations and locations, a likelihood implementation of the SWIFT model of eye-movement control during reading (Engbert et al., Psychological Review, 112, 2005, pp. 777-813) is proposed. Within the broader framework of data assimilation, Bayesian parameter inference with adaptive Markov Chain Monte Carlo techniques is facilitated for reliable model fitting. Across the different studies, this framework has shown to enable reliable parameter recovery from simulated data and prediction of experimental summary statistics. Despite its complexity, SWIFT can be fitted within a principled Bayesian workflow, capturing interindividual differences and modeling experimental effects on reading across different geometrical alterations of text. Based on these advancements, the integrated dynamical model SEAM is proposed, which combines eye-movement control, a traditionally psychological research area, and post-lexical language processing in the form of cue-based memory retrieval (Lewis \& Vasishth, Cognitive Science, 29, 2005, pp. 375-419), typically the purview of psycholinguistics. This proof-of-concept integration marks a significant step forward in natural language comprehension during reading and suggests that the presented methodology can be useful to develop complex cognitive dynamical models that integrate processes at levels of perception, higher cognition, and (oculo-)motor control. These findings collectively advance process-oriented cognitive modeling and highlight the importance of Bayesian inference, individual differences, and interdisciplinary integration for a holistic understanding of reading processes. Implications for theory and methodology, including proposals for model comparison and hierarchical parameter inference, are briefly discussed.}, language = {en} } @phdthesis{Seelig2021, author = {Seelig, Stefan}, title = {Parafoveal processing of lexical information during reading}, doi = {10.25932/publishup-50874}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-508743}, school = {Universit{\"a}t Potsdam}, pages = {xi, 113}, year = {2021}, abstract = {During sentence reading the eyes quickly jump from word to word to sample visual information with the high acuity of the fovea. Lexical properties of the currently fixated word are known to affect the duration of the fixation, reflecting an interaction of word processing with oculomotor planning. While low level properties of words in the parafovea can likewise affect the current fixation duration, results concerning the influence of lexical properties have been ambiguous (Drieghe, Rayner, \& Pollatsek, 2008; Kliegl, Nuthmann, \& Engbert, 2006). Experimental investigations of such lexical parafoveal-on-foveal effects using the boundary paradigm have instead shown, that lexical properties of parafoveal previews affect fixation durations on the upcoming target words (Risse \& Kliegl, 2014). However, the results were potentially confounded with effects of preview validity. The notion of parafoveal processing of lexical information challenges extant models of eye movements during reading. Models containing serial word processing assumptions have trouble explaining such effects, as they usually couple successful word processing to saccade planning, resulting in skipping of the parafoveal word. Although models with parallel word processing are less restricted, in the SWIFT model (Engbert, Longtin, \& Kliegl, 2002) only processing of the foveal word can directly influence the saccade latency. Here we combine the results of a boundary experiment (Chapter 2) with a predictive modeling approach using the SWIFT model, where we explore mechanisms of parafoveal inhibition in a simulation study (Chapter 4). We construct a likelihood function for the SWIFT model (Chapter 3) and utilize the experimental data in a Bayesian approach to parameter estimation (Chapter 3 \& 4). The experimental results show a substantial effect of parafoveal preview frequency on fixation durations on the target word, which can be clearly distinguished from the effect of preview validity. Using the eye movement data from the participants, we demonstrate the feasibility of the Bayesian approach even for a small set of estimated parameters, by comparing summary statistics of experimental and simulated data. Finally, we can show that the SWIFT model can account for the lexical preview effects, when a mechanism for parafoveal inhibition is added. The effects of preview validity were modeled best, when processing dependent saccade cancellation was added for invalid trials. In the simulation study only the control condition of the experiment was used for parameter estimation, allowing for cross validation. Simultaneously the number of free parameters was increased. High correlations of summary statistics demonstrate the capabilities of the parameter estimation approach. Taken together, the results advocate for a better integration of experimental data into computational modeling via parameter estimation.}, language = {en} } @misc{KlieglRisseLaubrock2007, author = {Kliegl, Reinhold and Risse, Sarah and Laubrock, Jochen}, title = {Preview Benefit and Parafoveal-on-Foveal Effects from Word N+2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57186}, year = {2007}, abstract = {Using the gaze-contingent boundary paradigm with the boundary placed after word n, we manipulated preview of word n+2 for fixations on word n. There was no preview benefit for first-pass reading on word n+2, replicating the results of Rayner, Juhasz, and Brown (2007), but there was a preview benefit on the three-letter word n+1, that is, after the boundary, but before word n+2. Additionally, both word n+1 and word n+2 exhibited parafoveal-on-foveal effects on word n. Thus, during a fixation on word n and given a short word n+1, some information is extracted from word n+2, supporting the hypothesis of distributed processing in the perceptual span.}, language = {en} } @phdthesis{Risse2011, author = {Risse, Sarah}, title = {Processing in the perceptual span : investigations with the n+2-boundary paradigm}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60414}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Cognitive psychology is traditionally interested in the interaction of perception, cognition, and behavioral control. Investigating eye movements in reading constitutes a field of research in which the processes and interactions of these subsystems can be studied in a well-defined environment. Thereby, the following questions are pursued: How much information is visually perceived during a fixation, how is processing achieved and temporally coordinated from visual letter encoding to final sentence comprehension, and how do such processes reflect on behavior such as the control of the eyes' movements during reading. Various theoretical models have been proposed to account for the specific eye-movement behavior in reading (for a review see Reichle, Rayner, \& Pollatsek, 2003). Some models are based on the idea of shifting attention serially from one word to the next within the sentence whereas others propose distributed attention allocating processing resources to more than one word at a time. As attention is assumed to drive word recognition processes one major difference between these models is that word processing must either occur in strict serial order, or that word processing is achieved in parallel. In spite of this crucial difference in the time course of word processing, both model classes perform well on explaining many of the benchmark effects in reading. In fact, there seems to be not much empirical evidence that challenges the models to a point at which their basic assumptions could be falsified. One issue often perceived as being decisive in the debate on serial and parallel word processing is how not-yet-fixated words to the right of fixation affect eye movements. Specifically, evidence is discussed as to what spatial extent such parafoveal words are previewed and how this influences current and subsequent word processing. Four experiments investigated parafoveal processing close to the spatial limits of the perceptual span. The present work aims to go beyond mere existence proofs of previewing words at such spatial distances. Introducing a manipulation that dissociates the sources of long-range preview effects, benefits and costs of parafoveal processing can be investigated in a single analysis and the differing impact is tracked across a three-word target region. In addition, the same manipulation evaluates the role of oculomotor error as the cause of non-local distributed effects. In this respect, the results contribute to a better understanding of the time course of word processing inside the perceptual span and attention allocation during reading.}, language = {en} } @misc{KentnerVasishth2015, author = {Kentner, Gerrit and Vasishth, Shravan}, title = {Prosodic focus marking in silent reading}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {467}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407976}, pages = {19}, year = {2015}, abstract = {Understanding a sentence and integrating it into the discourse depends upon the identification of its focus, which, in spoken German, is marked by accentuation. In the case of written language, which lacks explicit cues to accent, readers have to draw on other kinds of information to determine the focus. We study the joint or interactive effects of two kinds of information that have no direct representation in print but have each been shown to be influential in the reader's text comprehension: (i) the (low-level) rhythmic-prosodic structure that is based on the distribution of lexically stressed syllables, and (ii) the (high-level) discourse context that is grounded in the memory of previous linguistic content. Systematically manipulating these factors, we examine the way readers resolve a syntactic ambiguity involving the scopally ambiguous focus operator auch (engl. "too") in both oral (Experiment 1) and silent reading (Experiment 2). The results of both experiments attest that discourse context and local linguistic rhythm conspire to guide the syntactic and, concomitantly, the focus-structural analysis of ambiguous sentences. We argue that reading comprehension requires the (implicit) assignment of accents according to the focus structure and that, by establishing a prominence profile, the implicit prosodic rhythm directly affects accent assignment.}, language = {en} } @misc{HohensteinLaubrockKliegl2010, author = {Hohenstein, Sven and Laubrock, Jochen and Kliegl, Reinhold}, title = {Semantic preview benefit in eye movements during reading: a parafoveal past-priming study}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57203}, year = {2010}, abstract = {Eye movements in reading are sensitive to foveal and parafoveal word features. Whereas the influence of orthographic or phonological parafoveal information on gaze control is undisputed, there has been no reliable evidence for early parafoveal extraction of semantic information in alphabetic script. Using a novel combination of the gaze-contingent fast-priming and boundary paradigms, we demonstrate semantic preview benefit when a semantically related parafoveal word was available during the initial 125 ms of a fixation on the pre-target word (Experiments 1 and 2). When the target location was made more salient, significant parafoveal semantic priming occurred only at 80 ms (Experiment 3). Finally, with short primes only (20, 40, 60 ms) effects were not significant but numerically in the expected direction for 40 and 60 ms (Experiment 4). In all experiments, fixation durations on the target word increased with prime durations under all conditions. The evidence for extraction of semantic information from the parafoveal word favors an explanation in terms of parallel word processing in reading.}, language = {en} } @misc{FelserPattersonCunnings2015, author = {Felser, Claudia and Patterson, Clare and Cunnings, Ian}, title = {Structural constraints on pronoun binding and coreference: Evidence from eye movements during reading}, series = {Frontiers in psychology}, journal = {Frontiers in psychology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-78650}, year = {2015}, abstract = {A number of recent studies have investigated how syntactic and non-syntactic constraints combine to cue memory retrieval during anaphora resolution. In this paper we investigate how syntactic constraints and gender congruence interact to guide memory retrieval during the resolution of subject pronouns. Subject pronouns are always technically ambiguous, and the application of syntactic constraints on their interpretation depends on properties of the antecedent that is to be retrieved. While pronouns can freely corefer with non-quantified referential antecedents, linking a pronoun to a quantified antecedent is only possible in certain syntactic configurations via variable binding. We report the results from a judgment task and three online reading comprehension experiments investigating pronoun resolution with quantified and non-quantified antecedents. Results from both the judgment task and participants' eye movements during reading indicate that comprehenders freely allow pronouns to corefer with non-quantified antecedents, but that retrieval of quantified antecedents is restricted to specific syntactic environments. We interpret our findings as indicating that syntactic constraints constitute highly weighted cues to memory retrieval during anaphora resolution.}, language = {en} } @phdthesis{Nuthmann2005, author = {Nuthmann, Antje}, title = {The "where" and "when" of eye fixations in reading}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7931}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {To investigate eye-movement control in reading, the present thesis examined three phenomena related to the eyes' landing position within words, (1) the optimal viewing position (OVP), (2) the preferred viewing location (PVL), and (3) the Fixation-Duration Inverted-Optimal Viewing Position (IOVP) Effect. Based on a corpus-analytical approach (Exp. 1), the influence of variables word length, launch site distance, and word frequency was systematically explored. In addition, five experimental manipulations were conducted. First, word center was identified as the OVP, that is the position within a word where refixation probability is minimal. With increasing launch site distance, however, the OVP was found to move towards the word beginning. Several possible causes of refixations were discussed. The issue of refixation saccade programming was extensively investigated, suggesting that pre-planned and directly controlled refixation saccades coexist. Second, PVL curves, that is landing position distributions, show that the eyes are systematically deviated from the OVP, due to visuomotor constraints. By far the largest influence on mean and standard deviation of the Gaussian PVL curve was exhibited by launch site distance. Third, it was investigated how fixation durations vary as a function of landing position. The IOVP effect was replicated: Fixations located at word center are longer than those falling near the edges of a word. The effect of word frequency and/or launch site distance on the IOVP function mainly consisted in a vertical displacement of the curve. The Fixation-Duration IOVP effect is intriguing because word center (the OVP) would appear to be the best place to fixate and process a word. A critical part of the current work was devoted to investigate the origin of the effect. It was suggested that the IOVP effect arises as a consequence of mislocated fixations, i.e. fixations on unintended words, which are caused by saccadic errors. An algorithm for estimating the proportion of mislocated fixations from empirical data was developed, based on extrapolations of landing position distributions beyond word boundaries. As a new central theoretical claim it was suggested that a new saccade program is started immediately if the intended target word is missed. On average, this will lead to decreased durations for mislocated fixations. Because mislocated fixations were shown to be most prevalent at the beginning and end of words, the proposed mechanism generated the inverted U-shape for fixation durations when computed as a function of landing position. The proposed mechanism for generating the effect is generally compatible with both oculomotor and cognitive models of eye-movement control in reading.}, subject = {Allgemeine Psychologie}, language = {en} } @misc{LaubrockKliegl2015, author = {Laubrock, Jochen and Kliegl, Reinhold}, title = {The eye-voice span during reading aloud}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86904}, year = {2015}, abstract = {Although eye movements during reading are modulated by cognitive processing demands, they also reflect visual sampling of the input, and possibly preparation of output for speech or the inner voice. By simultaneously recording eye movements and the voice during reading aloud, we obtained an output measure that constrains the length of time spent on cognitive processing. Here we investigate the dynamics of the eye-voice span (EVS), the distance between eye and voice. We show that the EVS is regulated immediately during fixation of a word by either increasing fixation duration or programming a regressive eye movement against the reading direction. EVS size at the beginning of a fixation was positively correlated with the likelihood of regressions and refixations. Regression probability was further increased if the EVS was still large at the end of a fixation: if adjustment of fixation duration did not sufficiently reduce the EVS during a fixation, then a regression rather than a refixation followed with high probability. We further show that the EVS can help understand cognitive influences on fixation duration during reading: in mixed model analyses, the EVS was a stronger predictor of fixation durations than either word frequency or word length. The EVS modulated the influence of several other predictors on single fixation durations (SFDs). For example, word-N frequency effects were larger with a large EVS, especially when word N-1 frequency was low. Finally, a comparison of SFDs during oral and silent reading showed that reading is governed by similar principles in both reading modes, although EVS maintenance and articulatory processing also cause some differences. In summary, the EVS is regulated by adjusting fixation duration and/or by programming a regressive eye movement when the EVS gets too large. Overall, the EVS appears to be directly related to updating of the working memory buffer during reading.}, language = {en} } @misc{PaulyNottbusch2020, author = {Pauly, Dennis Nikolas and Nottbusch, Guido}, title = {The Influence of the German Capitalization Rules on Reading}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {622}, issn = {1866-8364}, doi = {10.25932/publishup-46085}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460857}, pages = {17}, year = {2020}, abstract = {German orthography systematically marks all nouns (even other nominalized word classes) by capitalizing their first letter. It is often claimed that readers benefit from the uppercase-letter syntactic and semantic information, which makes the processing of sentences easier (e.g., Bock et al., 1985, 1989). In order to test this hypothesis, we asked 54 German readers to read single sentences systematically manipulated by a target word (N). In the experimental condition (EXP), we used semantic priming (in the following example: sick → cold) in order to build up a strong expectation of a noun, which was actually an attribute for the following noun (N+1) (translated to English e.g., "The sick writer had a cold (N) nose (N+1) …"). The sentences in the control condition were built analogously, but word N was purposefully altered (keeping word length and frequency constant) to make its interpretation as a noun extremely unlikely (e.g., "The sick writer had a blue (N) nose (N+1) …"). In both conditions, the sentences were presented either following German standard orthography (Cap) or in lowercase spelling (NoCap). The capitalized nouns in the EXP/Cap condition should then prevent garden-path parsing, as capital letters can be recognized parafoveally. However, in the EXP/NoCap condition, we expected a garden-path effect on word N+1 affecting first-pass fixations and the number of regressions, as the reader realizes that word N is instead an adjective. As the control condition does not include a garden-path, we expected to find (small) effects of the violation of the orthographic rule in the CON/NoCap condition, but no garden-path effect. As a global result, it can be stated that reading sentences in which nouns are not marked by a majuscule slows a native German reader down significantly, but from an absolute point of view, the effect is small. Compared with other manipulations (e.g., transpositions or substitutions), a lowercase letter still represents the correct allograph in the correct position without affecting phonology. Furthermore, most German readers do have experience with other alphabetic writing systems that lack consistent noun capitalization, and in (private) digital communication lowercase nouns are quite common. Although our garden-path sentences did not show the desired effect, we found an indication of grammatical pre-processing enabled by the majuscule in the regularly spelled sentences: In the case of high noun frequency, we post hoc located parafovea-on-fovea effects, i.e., longer fixation durations, on the attributive adjective (word N). These benefits of capitalization could only be detected under specific circumstances. In other cases, we conclude that longer reading durations are mainly the result of disturbance in readers' habituation when the expected capitalization is missing.}, language = {en} } @phdthesis{Engelmann2016, author = {Engelmann, Felix}, title = {Toward an integrated model of sentence processing in reading}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100864}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 143}, year = {2016}, abstract = {In experiments investigating sentence processing, eye movement measures such as fixation durations and regression proportions while reading are commonly used to draw conclusions about processing difficulties. However, these measures are the result of an interaction of multiple cognitive levels and processing strategies and thus are only indirect indicators of processing difficulty. In order to properly interpret an eye movement response, one has to understand the underlying principles of adaptive processing such as trade-off mechanisms between reading speed and depth of comprehension that interact with task demands and individual differences. Therefore, it is necessary to establish explicit models of the respective mechanisms as well as their causal relationship with observable behavior. There are models of lexical processing and eye movement control on the one side and models on sentence parsing and memory processes on the other. However, no model so far combines both sides with explicitly defined linking assumptions. In this thesis, a model is developed that integrates oculomotor control with a parsing mechanism and a theory of cue-based memory retrieval. On the basis of previous empirical findings and independently motivated principles, adaptive, resource-preserving mechanisms of underspecification are proposed both on the level of memory access and on the level of syntactic parsing. The thesis first investigates the model of cue-based retrieval in sentence comprehension of Lewis \& Vasishth (2005) with a comprehensive literature review and computational modeling of retrieval interference in dependency processing. The results reveal a great variability in the data that is not explained by the theory. Therefore, two principles, 'distractor prominence' and 'cue confusion', are proposed as an extension to the theory, thus providing a more adequate description of systematic variance in empirical results as a consequence of experimental design, linguistic environment, and individual differences. In the remainder of the thesis, four interfaces between parsing and eye movement control are defined: Time Out, Reanalysis, Underspecification, and Subvocalization. By comparing computationally derived predictions with experimental results from the literature, it is investigated to what extent these four interfaces constitute an appropriate elementary set of assumptions for explaining specific eye movement patterns during sentence processing. Through simulations, it is shown how this system of in itself simple assumptions results in predictions of complex, adaptive behavior. In conclusion, it is argued that, on all levels, the sentence comprehension mechanism seeks a balance between necessary processing effort and reading speed on the basis of experience, task demands, and resource limitations. Theories of linguistic processing therefore need to be explicitly defined and implemented, in particular with respect to linking assumptions between observable behavior and underlying cognitive processes. The comprehensive model developed here integrates multiple levels of sentence processing that hitherto have only been studied in isolation. The model is made publicly available as an expandable framework for future studies of the interactions between parsing, memory access, and eye movement control.}, language = {en} } @misc{KlieglNuthmannEngbert2006, author = {Kliegl, Reinhold and Nuthmann, Antje and Engbert, Ralf}, title = {Tracking the Mind During Reading: The Influence of Past, Present, and Future Words on Fixation Durations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57225}, year = {2006}, abstract = {Reading requires the orchestration of visual, attentional, language-related, and oculomotor processing constraints. This study replicates previous effects of frequency, predictability, and length of fixated words on fixation durations in natural reading and demonstrates new effects of these variables related to previous and next words. Results are based on fixation durations recorded from 222 persons, each reading 144 sentences. Such evidence for distributed processing of words across fixation durations challenges psycholinguistic immediacy-of-processing and eye-mind assumptions. Most of the time the mind processes several words in parallel at different perceptual and cognitive levels. Eye movements can help to unravel these processes.}, language = {en} }