@phdthesis{Holsten2013, author = {Holsten, Anne}, title = {Climate change vulnerability assessments in the regional context}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66836}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Adapting sectors to new conditions under climate change requires an understanding of regional vulnerabilities. Conceptually, vulnerability is defined as a function of sensitivity and exposure, which determine climate impacts, and adaptive capacity of a system. Vulnerability assessments for quantifying these components have become a key tool within the climate change field. However, there is a disagreement on how to make the concept operational in studies from a scientific perspective. This conflict leads to many still unsolved challenges, especially regarding the quantification and aggregation of the components and their suitable level of complexity. This thesis therefore aims at advancing the scientific foundation of such studies by translating the concept of vulnerability into a systematic assessment structure. This includes all components and implies that for each considered impact (e.g. flash floods) a clear sensitive entity is defined (e.g. settlements) and related to a direction of change for a specific climatic stimulus (e.g. increasing impact due to increasing days with heavy precipitation). Regarding the challenging aggregation procedure, two alternative methods allowing a cross-sectoral overview are introduced and their advantages and disadvantages discussed. This assessment structure is subsequently exemplified for municipalities of the German state North Rhine-Westphalia via an indicator-based deductive approach using information from literature. It can be transferred also to other regions. As for many relevant sectors, suitable indicators to express the vulnerability components are lacking, new quantification methods are developed and applied in this thesis, for example for the forestry and health sector. A lack of empirical data on relevant thresholds is evident, for example which climatic changes would cause significant impacts. Consequently, the multi-sectoral study could only provide relative measures for each municipality, in relation to the region. To fill this gap, an exemplary sectoral study was carried out on windthrow impacts in forests to provide an absolute quantification of the present and future impact. This is achieved by formulating an empirical relation between the forest characteristics and damage based on data from a past storm event. The resulting measure indicating the sensitivity is then combined with wind conditions. Multi-sectoral vulnerability assessments require considerable resources, which often hinders the implementation. Thus, in a next step, the potential for reducing the complexity is explored. To predict forest fire occurrence, numerous meteorological indices are available, spanning over a range of complexity. Comparing their performance, the single variable relative humidity outperforms complex indicators for most German states in explaining the monthly fire pattern. This is the case albeit it is itself an input factor in most indices. Thus, this meteorological factor alone is well suited to evaluate forest fire danger in many Germany regions and allows a resource-efficient assessment. Similarly, the complexity of methods is assessed regarding the application of the ecohydrological model SWIM to the German region of Brandenburg. The inter-annual soil moisture levels simulated by this model can only poorly be represented by simpler statistical approach using the same input data. However, on a decadal time horizon, the statistical approach shows a good performance and a strong dominance of the soil characteristic field capacity. This points to a possibility to reduce the input factors for predicting long-term averages, but the results are restricted by a lack of empirical data on soil water for validation. The presented assessments of vulnerability and its components have shown that they are still a challenging scientific undertaking. Following the applied terminology, many problems arise when implementing it for regional studies. Advances in addressing shortcomings of previous studies have been made by constructing a new systematic structure for characterizing and aggregating vulnerability components. For this, multiple approaches were presented, but they have specific advantages and disadvantages, which should also be carefully considered in future studies. There is a potential to simplify some methods, but more systematic assessments on this are needed. Overall, this thesis strengthened the use of vulnerability assessments as a tool to support adaptation by enhancing their scientific basis.}, language = {en} } @phdthesis{Wattenbach2008, author = {Wattenbach, Martin}, title = {The hydrological effects of changes in forest area and species composition in the federal state of Brandenburg, Germany}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-27394}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {This thesis aims to quantify the human impact on the natural resource water at the landscape scale. The drivers in the federal state of Brandenburg (Germany), the area under investigation, are land-use changes induced by policy decisions at European and federal state level. The water resources of the federal state are particularly sensitive to changes in land-use due to low precipitation rates in the summer combined with sandy soils and high evapotranspiration rates. Key elements in landscape hydrology are forests because of their unique capacity to transport water from the soil to the atmosphere. Given these circumstances, decisions made at any level of administration that may have effects on the forest sector in the state are critical in relation to the water cycle. It is therefore essential to evaluate any decision that may change forest area and structure in such a sensitive region. Thus, as a first step, it was necessary to develop and implement a model able to simulate possible interactions and feedbacks between forested surfaces and the hydrological cycle at the landscape scale. The result is a model for simulating the hydrological properties of forest stands based on a robust computation of the temporal and spatial LAI (leaf area index) dynamics. The approach allows the simulation of all relevant hydrological processes with a low parameter demand. It includes the interception of precipitation and transpiration of forest stands with and without groundwater in the rooting zone. The model also considers phenology, biomass allocation, as well as mortality and simple management practices. It has been implemented as a module in the eco-hydrological model SWIM (Soil and Water Integrated Model). This model has been tested in two pre-studies to verify the applicability of its hydrological process description for the hydrological conditions typical for the state. The newly implemented forest module has been tested for Scots Pine (Pinus sylvestris) and in parts for Common Oak (Quercus robur and Q. petraea) in Brandenburg. For Scots Pine the results demonstrate a good simulation of annual biomass increase and LAI in addition to the satisfactory simulation of litter production. A comparison of the simulated and measured data of the May sprout for Scots pine and leaf unfolding for Oak, as well as the evaluation against daily transpiration measurements for Scots Pine, does support the applicability of the approach. The interception of precipitation has also been simulated and compared with weekly observed data for a Scots Pine stand which displays satisfactory results in both the vegetation periods and annual sums. After the development and testing phase, the model is used to analyse the effects of two scenarios. The first scenario is an increase in forest area on abandoned agricultural land that is triggered by a decrease in European agricultural production support. The second one is a shift in species composition from predominant Scots Pine to Common Oak that is based on decisions of the regional forestry authority to support a more natural species composition. The scenario effects are modelled for the federal state of Brandenburg on a 50m grid utilising spatially explicit land-use patterns. The results, for the first scenario, suggest a negative impact of an increase in forest area (9.4\% total state area) on the regional water balance, causing an increase in mean long-term annual evapotranspiration of 3.7\% at 100\% afforestation when compared to no afforestation. The relatively small annual change conceals a much more pronounced seasonal effect of a mean long-term evapotranspiration increase by 25.1\% in the spring causing a pronounced reduction in groundwater recharge and runoff. The reduction causes a lag effect that aggravates the scarcity of water resources in the summer. In contrast, in the second scenario, a change in species composition in existing forests (29.2\% total state area) from predominantly Scots Pine to Common Oak decreases the long-term annual mean evapotranspiration by 3.4\%, accompanied by a much weaker, but apparent, seasonal pattern. Both scenarios exhibit a high spatial heterogeneity because of the distinct natural conditions in the different regions of the state. Areas with groundwater levels near the surface are particularly sensitive to changes in forest area and regions with relatively high proportion of forest respond strongly to the change in species composition. In both cases this regional response is masked by a smaller linear mean effect for the total state area. Two critical sources of uncertainty in the model results have been investigated. The first one originates from the model calibration parameters estimated in the pre-study for lowland regions, such as the federal state. The combined effect of the parameters, when changed within their physical meaningful limits, unveils an overestimation of the mean water balance by 1.6\%. However, the distribution has a wide spread with 14.7\% for the 90th percentile and -9.9\% for the 10th percentile. The second source of uncertainty emerges from the parameterisation of the forest module. The analysis exhibits a standard deviation of 0.6 \% over a ten year period in the mean of the simulated evapotranspiration as a result of variance in the key forest parameters. The analysis suggests that the combined uncertainty in the model results is dominated by the uncertainties of calibration parameters. Therefore, the effect of the first scenario might be underestimated because the calculated increase in evapotranspiration is too small. This may lead to an overestimation of the water balance towards runoff and groundwater recharge. The opposite can be assumed for the second scenario in which the decrease in evapotranspiration might be overestimated.}, language = {en} }