@phdthesis{GohlGreenaway2023, author = {Gohl-Greenaway, Niklas}, title = {Essays in public economics}, doi = {10.25932/publishup-60902}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-609026}, school = {Universit{\"a}t Potsdam}, pages = {10, 291}, year = {2023}, abstract = {This cumulative dissertation uses economic theory and micro-econometric tools and evaluation methods to analyse public policies and their impact on welfare and individual behaviour. In particular, it focuses on policies in two distinct areas that represent fundamental societal challenges in the 21st century: the ageing of society and life in densely-populated urban agglomerations. Together, these areas shape important financial decisions in a person's life, impact welfare, and are driving forces behind many of the challenges in today's societies. The five self-contained research chapters of this thesis analyse the forward looking effects of pension reforms, affordable housing policies as well as a public transport subsidy and its effect on air pollution.}, language = {en} } @phdthesis{WegerCoenen2021, author = {Weger Coenen, Lindsey}, title = {Exploring potential impacts from transitions in German and European energy on GHG and air pollutant emissions and on ozone air quality}, doi = {10.25932/publishup-49698}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-496986}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 161}, year = {2021}, abstract = {Energy is at the heart of the climate crisis—but also at the heart of any efforts for climate change mitigation. Energy consumption is namely responsible for approximately three quarters of global anthropogenic greenhouse gas (GHG) emissions. Therefore, central to any serious plans to stave off a climate catastrophe is a major transformation of the world's energy system, which would move society away from fossil fuels and towards a net-zero energy future. Considering that fossil fuels are also a major source of air pollutant emissions, the energy transition has important implications for air quality as well, and thus also for human and environmental health. Both Europe and Germany have set the goal of becoming GHG neutral by 2050, and moreover have demonstrated their deep commitment to a comprehensive energy transition. Two of the most significant developments in energy policy over the past decade have been the interest in expansion of shale gas and hydrogen, which accordingly have garnered great interest and debate among public, private and political actors. In this context, sound scientific information can play an important role by informing stakeholder dialogue and future research investments, and by supporting evidence-based decision-making. This thesis examines anticipated environmental impacts from possible, relevant changes in the European energy system, in order to impart valuable insight and fill critical gaps in knowledge. Specifically, it investigates possible future shale gas development in Germany and the United Kingdom (UK), as well as a hypothetical, complete transition to hydrogen mobility in Germany. Moreover, it assesses the impacts on GHG and air pollutant emissions, and on tropospheric ozone (O3) air quality. The analysis is facilitated by constructing emission scenarios and performing air quality modeling via the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). The work of this thesis is presented in three research papers. The first paper finds that methane (CH4) leakage rates from upstream shale gas development in Germany and the UK would range between 0.35\% and 1.36\% in a realistic, business-as-usual case, while they would be significantly lower - between 0.08\% and 0.15\% - in an optimistic, strict regulation and high compliance case, thus demonstrating the value and potential of measures to substantially reduce emissions. Yet, while the optimistic case is technically feasible, it is unlikely that the practices and technologies assumed would be applied and accomplished on a systematic, regular basis, owing to economics and limited monitoring resources. The realistic CH4 leakage rates estimated in this study are comparable to values reported by studies carried out in the US and elsewhere. In contrast, the optimistic rates are similar to official CH4 leakage data from upstream gas production in Germany and in the UK. Considering that there is a lack of systematic, transparent and independent reports supporting the official values, this study further highlights the need for more research efforts in this direction. Compared with national energy sector emissions, this study suggests that shale gas emissions of volatile organic compounds (VOCs) could be significant, though relatively insignificant for other air pollutants. Similar to CH4, measures could be effective for reducing VOCs emissions. The second paper shows that VOC and nitrogen oxides (NOx) emissions from a future shale gas industry in Germany and the UK have potentially harmful consequences for European O3 air quality on both the local and regional scale. The results indicate a peak increase in maximum daily 8-hour average O3 (MDA8) ranging from 3.7 µg m-3 to 28.3 µg m-3. Findings suggest that shale gas activities could result in additional exceedances of MDA8 at a substantial percentage of regulatory measurement stations both locally and in neighboring and distant countries, with up to circa one third of stations in the UK and one fifth of stations in Germany experiencing additional exceedances. Moreover, the results reveal that the shale gas impact on the cumulative health-related metric SOMO35 (annual Sum of Ozone Means Over 35 ppb) could be substantial, with a maximum increase of circa 28\%. Overall, the findings suggest that shale gas VOC emissions could play a critical role in O3 enhancement, while NOx emissions would contribute to a lesser extent. Thus, the results indicate that stringent regulation of VOC emissions would be important in the event of future European shale gas development to minimize deleterious health outcomes. The third paper demonstrates that a hypothetical, complete transition of the German vehicle fleet to hydrogen fuel cell technology could contribute substantially to Germany's climate and air quality goals. The results indicate that if the hydrogen were to be produced via renewable-powered water electrolysis (green hydrogen), German carbon dioxide equivalent (CO2eq) emissions would decrease by 179 MtCO2eq annually, though if electrolysis were powered by the current electricity mix, emissions would instead increase by 95 MtCO2eq annually. The findings generally reveal a notable anticipated decrease in German energy emissions of regulated air pollutants. The results suggest that vehicular hydrogen demand is 1000 PJ annually, which would require between 446 TWh and 525 TWh for electrolysis, hydrogen transport and storage. When only the heavy duty vehicle segment (HDVs) is shifted to green hydrogen, the results of this thesis show that vehicular hydrogen demand drops to 371 PJ, while a deep emissions cut is still realized (-57 MtCO2eq), suggesting that HDVs are a low-hanging fruit for contributing to decarbonization of the German road transport sector with hydrogen energy.}, language = {en} } @techreport{OPUS4-8357, title = {Kurzbericht zur Luftg{\"u}te des Jahres 2005}, series = {Materialien zur Umwelt}, journal = {Materialien zur Umwelt}, number = {1}, address = {G{\"u}strow}, organization = {Landesamt f{\"u}r Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-bbdig-92}, pages = {26}, year = {2006}, language = {de} } @techreport{OPUS4-8354, title = {Kurzbericht zur Luftg{\"u}te des Jahres 2006}, series = {Materialien zur Umwelt}, journal = {Materialien zur Umwelt}, number = {1/2007}, address = {G{\"u}strow}, organization = {Landesamt f{\"u}r Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-bbdig-102}, pages = {27}, year = {2007}, language = {de} } @phdthesis{Mahata2021, author = {Mahata, Khadak Singh}, title = {Spatiotemporal variations of key air pollutants and greenhouse gases in the Himalayan foothills}, doi = {10.25932/publishup-51991}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519910}, school = {Universit{\"a}t Potsdam}, pages = {xv, 144}, year = {2021}, abstract = {South Asia is a rapidly developing, densely populated and highly polluted region that is facing the impacts of increasing air pollution and climate change, and yet it remains one of the least studied regions of the world scientifically. In recognition of this situation, this thesis focuses on studying (i) the spatial and temporal variation of key greenhouse gases (CO2 and CH4) and air pollutants (CO and O3) and (ii) the vertical distribution of air pollutants (PM, BC) in the foothills of the Himalaya. Five sites were selected in the Kathmandu Valley, the capital region of Nepal, along with two sites outside of the valley in the Makawanpur and Kaski districts, and conducted measurements during the period of 2013-2014 and 2016. These measurements are analyzed in this thesis. The CO measurements at multiple sites in the Kathmandu Valley showed a clear diurnal cycle: morning and evening levels were high, with an afternoon dip. There are slight differences in the diurnal cycles of CO2 and CH4, with the CO2 and CH4 mixing ratios increasing after the afternoon dip, until the morning peak the next day. The mixing layer height (MLH) of the nocturnal stable layer is relatively constant (~ 200 m) during the night, after which it transitions to a convective mixing layer during the day and the MLH increases up to 1200 m in the afternoon. Pollutants are thus largely trapped in the valley from the evening until sunrise the following day, and the concentration of pollutants increases due to emissions during the night. During afternoon, the pollutants are diluted due to the circulation by the valley winds after the break-up of the mixing layer. The major emission sources of GHGs and air pollutants in the valley are transport sector, residential cooking, brick kilns, trash burning, and agro-residue burning. Brick industries are influential in the winter and pre-monsoon season. The contribution of regional forest fires and agro-residue burning are seen during the pre-monsoon season. In addition, relatively higher CO values were also observed at the valley outskirts (Bhimdhunga and Naikhandi), which indicates the contribution of regional emission sources. This was also supported by the presence of higher concentrations of O3 during the pre-monsoon season. The mixing ratios of CO2 (419.3 ±6.0 ppm) and CH4 (2.192 ±0.066 ppm) in the valley were much higher than at background sites, including the Mauna Loa observatory (CO2: 396.8 ± 2.0 ppm, CH4:1.831 ± 0.110 ppm) and Waligaun (CO2: 397.7 ± 3.6 ppm, CH4: 1.879 ± 0.009 ppm), China, as well as at an urban site Shadnagar (CH4: 1.92 ± 0.07 ppm) in India. The daily 8 hour maximum O3 average in the Kathmandu Valley exceeds the WHO recommended value during more than 80\% of the days during the pre-monsoon period, which represents a significant risk for human health and ecosystems in the region. Moreover, in the measurements of the vertical distribution of particulate matter, which were made using an ultralight aircraft, and are the first of their kind in the region, an elevated polluted layer at around ca. 3000 m asl. was detected over the Pokhara Valley. The layer could be associated with the large-scale regional transport of pollution. These contributions towards understanding the distributions of key air pollutants and their main sources will provide helpful information for developing management plans and policies to help reduce the risks for the millions of people living in the region.}, language = {en} } @phdthesis{Schmitz2023, author = {Schmitz, Se{\´a}n}, title = {Using low-cost sensors to gather high resolution measurements of air quality in urban environments and inform mobility policy}, doi = {10.25932/publishup-60105}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-601053}, school = {Universit{\"a}t Potsdam}, pages = {180}, year = {2023}, abstract = {Air pollution has been a persistent global problem in the past several hundred years. While some industrialized nations have shown improvements in their air quality through stricter regulation, others have experienced declines as they rapidly industrialize. The WHO's 2021 update of their recommended air pollution limit values reflects the substantial impacts on human health of pollutants such as NO2 and O3, as recent epidemiological evidence suggests substantial long-term health impacts of air pollution even at low concentrations. Alongside developments in our understanding of air pollution's health impacts, the new technology of low-cost sensors (LCS) has been taken up by both academia and industry as a new method for measuring air pollution. Due primarily to their lower cost and smaller size, they can be used in a variety of different applications, including in the development of higher resolution measurement networks, in source identification, and in measurements of air pollution exposure. While significant efforts have been made to accurately calibrate LCS with reference instrumentation and various statistical models, accuracy and precision remain limited by variable sensor sensitivity. Furthermore, standard procedures for calibration still do not exist and most proprietary calibration algorithms are black-box, inaccessible to the public. This work seeks to expand the knowledge base on LCS in several different ways: 1) by developing an open-source calibration methodology; 2) by deploying LCS at high spatial resolution in urban environments to test their capability in measuring microscale changes in urban air pollution; 3) by connecting LCS deployments with the implementation of local mobility policies to provide policy advice on resultant changes in air quality. In a first step, it was found that LCS can be consistently calibrated with good performance against reference instrumentation using seven general steps: 1) assessing raw data distribution, 2) cleaning data, 3) flagging data, 4) model selection and tuning, 5) model validation, 6) exporting final predictions, and 7) calculating associated uncertainty. By emphasizing the need for consistent reporting of details at each step, most crucially on model selection, validation, and performance, this work pushed forward with the effort towards standardization of calibration methodologies. In addition, with the open-source publication of code and data for the seven-step methodology, advances were made towards reforming the largely black-box nature of LCS calibrations. With a transparent and reliable calibration methodology established, LCS were then deployed in various street canyons between 2017 and 2020. Using two types of LCS, metal oxide (MOS) and electrochemical (EC), their performance in capturing expected patterns of urban NO2 and O3 pollution was evaluated. Results showed that calibrated concentrations from MOS and EC sensors matched general diurnal patterns in NO2 and O3 pollution measured using reference instruments. While MOS proved to be unreliable for discerning differences among measured locations within the urban environment, the concentrations measured with calibrated EC sensors matched expectations from modelling studies on NO2 and O3 pollution distribution in street canyons. As such, it was concluded that LCS are appropriate for measuring urban air quality, including for assisting urban-scale air pollution model development, and can reveal new insights into air pollution in urban environments. To achieve the last goal of this work, two measurement campaigns were conducted in connection with the implementation of three mobility policies in Berlin. The first involved the construction of a pop-up bike lane on Kottbusser Damm in response to the COVID-19 pandemic, the second surrounded the temporary implementation of a community space on B{\"o}ckhstrasse, and the last was focused on the closure of a portion of Friedrichstrasse to all motorized traffic. In all cases, measurements of NO2 were collected before and after the measure was implemented to assess changes in air quality resultant from these policies. Results from the Kottbusser Damm experiment showed that the bike-lane reduced NO2 concentrations that cyclists were exposed to by 22 ± 19\%. On Friedrichstrasse, the street closure reduced NO2 concentrations to the level of the urban background without worsening the air quality on side streets. These valuable results were communicated swiftly to partners in the city administration responsible for evaluating the policies' success and future, highlighting the ability of LCS to provide policy-relevant results. As a new technology, much is still to be learned about LCS and their value to academic research in the atmospheric sciences. Nevertheless, this work has advanced the state of the art in several ways. First, it contributed a novel open-source calibration methodology that can be used by a LCS end-users for various air pollutants. Second, it strengthened the evidence base on the reliability of LCS for measuring urban air quality, finding through novel deployments in street canyons that LCS can be used at high spatial resolution to understand microscale air pollution dynamics. Last, it is the first of its kind to connect LCS measurements directly with mobility policies to understand their influences on local air quality, resulting in policy-relevant findings valuable for decisionmakers. It serves as an example of the potential for LCS to expand our understanding of air pollution at various scales, as well as their ability to serve as valuable tools in transdisciplinary research.}, language = {en} }