@article{WisotzkiBaconBlaizotetal.2016, author = {Wisotzki, Lutz and Bacon, Roland and Blaizot, J. and Brinchmann, Jarle and Herenz, Edmund Christian and Schaye, Joop and Bouche, Nicolas and Cantalupo, Sebastiano and Contini, Thierry and Carollo, C. M. and Caruana, Joseph and Courbot, J. -B. and Emsellem, E. and Kamann, S. and Kerutt, Josephine Victoria and Leclercq, F. and Lilly, S. J. and Patricio, V. and Sandin, C. and Steinmetz, Matthias and Straka, Lorrie A. and Urrutia, Tanya and Verhamme, A. and Weilbacher, Peter Michael and Wendt, Martin}, title = {Extended Lyman alpha haloes around individual high-redshift galaxies revealed by MUSE}, series = {Science}, volume = {587}, journal = {Science}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527384}, pages = {27}, year = {2016}, abstract = {We report the detection of extended Ly alpha emission around individual star-forming galaxies at redshifts z = 3-6 in an ultradeep exposure of the Hubble Deep Field South obtained with MUSE on the ESO-VLT. The data reach a limiting surface brightness (1 sigma) of similar to 1 x 10(-19) erg s(-1) cm(-2) arcsec(-2) in azimuthally averaged radial profiles, an order of magnitude improvement over previous narrowband imaging. Our sample consists of 26 spectroscopically confirmed Ly alpha-emitting, but mostly continuum-faint (m(AB) greater than or similar to 27) galaxies. In most objects the Ly alpha emission is considerably more extended than the UV continuum light. While five of the faintest galaxies in the sample show no significantly detected Ly alpha haloes, the derived upper limits suggest that this is due to insufficient S/N. Ly alpha haloes therefore appear to be ubiquitous even for low-mass (similar to 10(8)-10(9) M-circle dot) star-forming galaxies at z > 3. We decompose the Ly alpha emission of each object into a compact component tracing the UV continuum and an extended halo component, and infer sizes and luminosities of the haloes. The extended Ly alpha emission approximately follows an exponential surface brightness distribution with a scale length of a few kpc. While these haloes are thus quite modest in terms of their absolute sizes, they are larger by a factor of 5-15 than the corresponding rest-frame UV continuum sources as seen by HST. They are also much more extended, by a factor similar to 5, than Ly alpha haloes around low-redshift star-forming galaxies. Between similar to 40\% and greater than or similar to 90\% of the observed Ly alpha flux comes from the extended halo component, with no obvious correlation of this fraction with either the absolute or the relative size of the Ly alpha halo. Our observations provide direct insights into the spatial distribution of at least partly neutral gas residing in the circumgalactic medium of low to intermediate mass galaxies at z > 3.}, language = {en} } @article{KamannHusserBrinchmannetal.2016, author = {Kamann, S. and Husser, T. -O. and Brinchmann, Jarle and Emsellem, E. and Weilbacher, Peter Michael and Wisotzki, Lutz and Wendt, Martin and Krajnovic, D. and Roth, M. M. and Bacon, Roland and Dreizler, S.}, title = {MUSE crowded field 3D spectroscopy of over 12 000 stars in the globular cluster NGC 6397}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {588}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527065}, pages = {12}, year = {2016}, abstract = {We present a detailed analysis of the kinematics of the Galactic globular cluster NGC 6397 based on more than similar to 18 000 spectra obtained with the novel integral field spectrograph MUSE. While NGC 6397 is often considered a core collapse cluster, our analysis suggests a flattening of the surface brightness profile at the smallest radii. Although it is among the nearest globular clusters, the low velocity dispersion of NGC 6397 of < 5 km s(-1) imposes heavy demands on the quality of the kinematical data. We show that despite its limited spectral resolution, MUSE reaches an accuracy of 1 km s(-1) in the analysis of stellar spectra. We find slight evidence for a rotational component in the cluster and the velocity dispersion profile that we obtain shows a mild central cusp. To investigate the nature of this feature, we calculate spherical Jeans models and compare these models to our kinematical data. This comparison shows that if a constant mass-to-light ratio is assumed, the addition of an intermediate-mass black hole with a mass of 600 M-circle dot brings the model predictions into agreement with our data, and therefore could be at the origin of the velocity dispersion profile. We further investigate cases with varying mass-to-light ratios and find that a compact dark stellar component can also explain our observations. However, such a component would closely resemble the black hole from the constant mass-to-light ratio models as this component must be confined to the central similar to 5 ' of the cluster and must have a similar mass. Independent constraints on the distribution of stellar remnants in the cluster or kinematic measurements at the highest possible spatial resolution should be able to distinguish the two alternatives.}, language = {en} } @article{BoucheFinleySchroetteretal.2016, author = {Bouche, Nicolas and Finley, H. and Schroetter, I. and Murphy, M. T. and Richter, Philipp and Bacon, Roland and Contini, Thierry and Richard, J. and Wendt, Martin and Kamann, S. and Epinat, Benoit and Cantalupo, Sebastiano and Straka, Lorrie A. and Schaye, Joop and Martin, C. L. and Peroux, C. and Wisotzki, Lutz and Soto, K. and Lilly, S. and Carollo, C. M. and Brinchmann, Jarle and Kollatschny, W.}, title = {POSSIBLE SIGNATURES OF A COLD-FLOW DISK FROM MUSE USING A z similar to 1 GALAXY-QUASAR PAIR TOWARD SDSS J1422-0001}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {820}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/820/2/121}, pages = {1872 -- 1882}, year = {2016}, abstract = {We use a background quasar to detect the presence of circumgalactic gas around a z = 0.91 low-mass star-forming galaxy. Data from the new Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope show that the galaxy has a dust-corrected star formation rate (SFR) of 4.7 +/- 2.0. M-circle dot yr(-1), with no companion down to 0.22 M-circle dot yr(-1) (5 sigma) within 240 h(-1) kpc ("30"). Using a high-resolution spectrum of the background quasar, which is fortuitously aligned with the galaxy major axis (with an azimuth angle alpha of only 15 degrees), we find, in the gas kinematics traced by low-ionization lines, distinct signatures consistent with those expected for a "cold-flow disk" extending at least 12 kpc (3 x R-1/2). We estimate the mass accretion rate M-in to be at least two to three times larger than the SFR, using the geometric constraints from the IFU data and the H (I) column density of log N-H (I)/cm(-2) similar or equal to 20.4 obtained from a Hubble Space Telescope/COS near-UV spectrum. From a detailed analysis of the low-ionization lines (e.g., Zn II, Cr II, Ti II, MnII, Si II), the accreting material appears to be enriched to about 0.4 Z(circle dot) (albeit with large uncertainties: log Z/Z(circle dot) = -0.4 +/- 0.4), which is comparable to the galaxy metallicity (12 + log O/H = 8.7 +/- 0.2), implying a large recycling fraction from past outflows. Blueshifted Mg II and Fe II absorptions in the galaxy spectrum from the MUSE data reveal the presence of an outflow. The Mg II and Fe II absorption line ratios indicate emission infilling due to scattering processes, but the MUSE data do not show any signs of fluorescent Fe II* emission.}, language = {en} }