@article{HeistermannFranckeGeorgietal.2014, author = {Heistermann, Maik and Francke, Till and Georgi, Christof and Bronstert, Axel}, title = {Increasing life expectancy of water resources literature}, series = {Water resources research}, volume = {50}, journal = {Water resources research}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1002/2014WR015674}, pages = {5019 -- 5028}, year = {2014}, abstract = {In a study from 2008, Lariviere and colleagues showed, for the field of natural sciences and engineering, that the median age of cited references is increasing over time. This result was considered counterintuitive: with the advent of electronic search engines, online journal issues and open access publications, one could have expected that cited literature is becoming younger. That study has motivated us to take a closer look at the changes in the age distribution of references that have been cited in water resources journals since 1965. Not only could we confirm the findings of Lariviere and colleagues. We were also able to show that the aging is mainly happening in the oldest 10-25\% of an average reference list. This is consistent with our analysis of top-cited papers in the field of water resources. Rankings based on total citations since 1965 consistently show the dominance of old literature, including text books and research papers in equal shares. For most top-cited old-timers, citations are still growing exponentially. There is strong evidence that most citations are attracted by publications that introduced methods which meanwhile belong to the standard toolset of researchers and practitioners in the field of water resources. Although we think that this trend should not be overinterpreted as a sign of stagnancy, there might be cause for concern regarding how authors select their references. We question the increasing citation of textbook knowledge as it holds the risk that reference lists become overcrowded, and that the readability of papers deteriorates.}, language = {en} } @article{BuergerHeistermannBronstert2014, author = {B{\"u}rger, Gerd and Heistermann, Maik and Bronstert, Axel}, title = {Towards subdaily rainfall disaggregation via Clausius-Clapeyron}, series = {Journal of hydrometeorology}, volume = {15}, journal = {Journal of hydrometeorology}, number = {3}, publisher = {American Meteorological Soc.}, address = {Boston}, issn = {1525-755X}, doi = {10.1175/JHM-D-13-0161.1}, pages = {1303 -- 1311}, year = {2014}, abstract = {Two lines of research are combined in this study: first, the development of tools for the temporal disaggregation of precipitation, and second, some newer results on the exponential scaling of heavy short-term precipitation with temperature, roughly following the Clausius-Clapeyron (CC) relation. Having no extra temperature dependence, the traditional disaggregation schemes are shown to lack the crucial CC-type temperature dependence. The authors introduce a proof-of-concept adjustment of an existing disaggregation tool, the multiplicative cascade model of Olsson, and show that, in principal, it is possible to include temperature dependence in the disaggregation step, resulting in a fairly realistic temperature dependence of the CC type. They conclude by outlining the main calibration steps necessary to develop a full-fledged CC disaggregation scheme and discuss possible applications.}, language = {en} }