@misc{AlirezaeizanjaniGrossmannPfeiferetal.2020, author = {Alirezaeizanjani, Zahra and Großmann, Robert and Pfeifer, Veronika and Hintsche, Marius and Beta, Carsten}, title = {Chemotaxis strategies of bacteria with multiple run modes}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {22}, issn = {1866-8372}, doi = {10.25932/publishup-51909}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519098}, pages = {10}, year = {2020}, abstract = {Bacterial chemotaxis-a fundamental example of directional navigation in the living world-is key to many biological processes, including the spreading of bacterial infections. Many bacterial species were recently reported to exhibit several distinct swimming modes-the flagella may, for example, push the cell body or wrap around it. How do the different run modes shape the chemotaxis strategy of a multimode swimmer? Here, we investigate chemotactic motion of the soil bacterium Pseudomonas putida as a model organism. By simultaneously tracking the position of the cell body and the configuration of its flagella, we demonstrate that individual run modes show different chemotactic responses in nutrition gradients and, thus, constitute distinct behavioral states. On the basis of an active particle model, we demonstrate that switching between multiple run states that differ in their speed and responsiveness provides the basis for robust and efficient chemotaxis in complex natural habitats.}, language = {en} } @phdthesis{Alexoudi2023, author = {Alexoudi, Xanthippi}, title = {Clarifying the discrepant results in the characterization of exoplanetary atmospheres}, doi = {10.25932/publishup-60565}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-605659}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 125}, year = {2023}, abstract = {Planets outside our solar system, so-called "exoplanets", can be detected with different methods, and currently more than 5000 exoplanets have been confirmed, according to NASA Exoplanet Archive. One major highlight of the studies on exoplanets in the past twenty years is the characterization of their atmospheres usingtransmission spectroscopy as the exoplanet transits. However, this characterization is a challenging process and sometimes there are reported discrepancies in the literature regarding the atmosphere of the same exoplanet. One potential reason for the observed atmospheric inconsistencies is called impact parameter degeneracy, and it is highly driven by the limb darkening effect of the host star. A brief introductionto those topics in presented in chapter 1, while the motivation and objectives of thiswork are described in chapter 2.The first goal is to clarify the origin of the transmission spectrum, which is anindicator of an exoplanet's atmosphere; whether it is real or influenced by the impactparameter degeneracy. A second goal is to determine whether photometry from space using the Transiting Exoplanet Survey Satellite (TESS), could improve on the major parameters, which are responsible for the aforementioned degeneracy, of known exoplanetary systems. Three individual projects were conducted in order toaddress those goals. The three manuscripts are presented, in short, in the manuscriptoverview in chapter 3.More specifically, in chapter 4, the first manuscript is presented, which is an ex-tended investigation on the impact parameter degeneracy and its application onsynthetic transmission spectra. Evidently, the limb darkening of the host star isan important driver for this effect. It keeps the degeneracy persisting through different groups of exoplanets, based on the uncertainty of their impact parameter and on the type of their host star. The second goal, was addressed in the second and third manuscripts (chapter 5 and chapter 6 respectively). Using observationsfrom the TESS mission, two samples of exoplanets were studied; 10 transiting inflated hot-Jupiters and 43 transiting grazing systems. Potentially, the refinement or confirmation of their major system parameters' measurements can assist in solving current or future discrepancies regarding their atmospheric characterization.In chapter 7 the conclusions of this work are discussed, while in chapter 8 itis proposed how TESS's measurements can be able to discern between erroneousinterpretations of transmission spectra, especially on systems where the impact parameter degeneracy is likely not applicable.}, language = {en} } @article{AldorettaStLouisRichardsonetal.2015, author = {Aldoretta, E. J. and St-Louis, N. and Richardson, N. D. and Moffat, Anthony F. J. and Eversberg, T. and Hill, G. M.}, title = {The Results of the 2013 Pro-Am Wolf-Rayet Campaign}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87713}, pages = {75 -- 78}, year = {2015}, abstract = {Professional and amateur astronomers around the world contributed to a 4-month long campaign in 2013, mainly in spectroscopy but also in photometry, interferometry and polarimetry, to observe the first 3 Wolf-Rayet stars discovered: WR 134 (WN6b), WR 135 (WC8) and WR 137 (WC7pd+O9). Each of these stars are interesting in their own way, showing a variety of stellar wind structures. The spectroscopic data from this campaign were reduced and analyzed for WR 134 in order to better understand its behavior and long-term periodicity in the context of CIRs in the wind. We will be presenting the results of these spectroscopic data, which include the confirmation of the CIR variability and a time-coherency of ∼ 40 days (half-life of ∼ 20 days).}, language = {en} } @phdthesis{Albus2003, author = {Albus, Alexander P.}, title = {Mixtures of Bosonic and Fermionic atoms}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001065}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Ziel der Arbeit war die systematische theoretische Behandlung von Gemischen aus bosonischen und fermionischen Atomen in einem Parameterbereich, der sich zur Beschreibung von aktuellen Experimenten mit ultra-kalten atomaren Gasen eignet. Zuerst wurde der Formalismus der Quantenfeldtheorie auf homogene, atomare Boson-Fermion Gemische erweitert, um grundlegende Gr{\"o}ßen wie Quasiteilchenspektren, die Grundzustandsenergie und daraus abgeleitete Gr{\"o}ßen {\"u}ber die Molekularfeldtheorie hinaus zu berechnen. Unter Zuhilfenahme der dieser Resultate System wurde ein Boson-Fermion Gemisch in einem Fallenpotential im Rahmen der Dichtefunktionaltheorie beschrieben. Daraus konnten die Dichteprofile ermittelt werden und es ließen sich drei Bereiche im Phasendiagramm identifizieren: (i) ein Bereich eines stabilen Gemisches, (ii) ein Bereich, in dem die Spezies entmischt sind und (iii) ein Bereich, in dem das System kollabiert. Im letzten dieser drei F{\"a}llen waren Austausch--Korrelationseffekte signifikant. Weiterhin wurde die {\"A}nderung der kritischen Temperatur der Bose-Einstein-Kondensation aufgrund der Boson-Fermion-Wechselwirkung berechnet. Verursacht wird dieser Effekt von Dichtumverteilungen aufgrund der Wechselwirkung. Dann wurden Boson-Fermion Gemische in optischen Gittern betrachtet. Ein Stabilit{\"a}tskriterium gegen Phasenentmischung wurde gefunden und es ließen sich Bedingungen f{\"u}r einen suprafl{\"u}ssig zu Mott-isolations Phasen{\"u}bergang angeben. Diese wurden sowohl mittels einer Molekularfeldrechnung als auch numerisch im Rahmen eines Gutzwilleransatzes gefunden. Es wurden weiterhin neuartige frustrierte Grundzust{\"a}nde im Fall von sehr großen Gitterst{\"a}rken gefunden.}, language = {en} } @phdthesis{Albers2006, author = {Albers, Nicole}, title = {On the relevance of adhesion : applications to Saturn's rings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-10848}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {Since their discovery in 1610 by Galileo Galilei, Saturn's rings continue to fascinate both experts and amateurs. Countless numbers of icy grains in almost Keplerian orbits reveal a wealth of structures such as ringlets, voids and gaps, wakes and waves, and many more. Grains are found to increase in size with increasing radial distance to Saturn. Recently discovered "propeller" structures in the Cassini spacecraft data, provide evidence for the existence of embedded moonlets. In the wake of these findings, the discussion resumes about origin and evolution of planetary rings, and growth processes in tidal environments. In this thesis, a contact model for binary adhesive, viscoelastic collisions is developed that accounts for agglomeration as well as restitution. Collisional outcomes are crucially determined by the impact speed and masses of the collision partners and yield a maximal impact velocity at which agglomeration still occurs. Based on the latter, a self-consistent kinetic concept is proposed. The model considers all possible collisional outcomes as there are coagulation, restitution, and fragmentation. Emphasizing the evolution of the mass spectrum and furthermore concentrating on coagulation alone, a coagulation equation, including a restricted sticking probability is derived. The otherwise phenomenological Smoluchowski equation is reproduced from basic principles and denotes a limit case to the derived coagulation equation. Qualitative and quantitative analysis of the relevance of adhesion to force-free granular gases and to those under the influence of Keplerian shear is investigated. Capture probability, agglomerate stability, and the mass spectrum evolution are investigated in the context of adhesive interactions. A size dependent radial limit distance from the central planet is obtained refining the Roche criterion. Furthermore, capture probability in the presence of adhesion is generally different compared to the case of pure gravitational capture. In contrast to a Smoluchowski-type evolution of the mass spectrum, numerical simulations of the obtained coagulation equation revealed, that a transition from smaller grains to larger bodies cannot occur via a collisional cascade alone. For parameters used in this study, effective growth ceases at an average size of centimeters.}, subject = {Saturn}, language = {en} } @phdthesis{Alawashra2024, author = {Alawashra, Mahmoud}, title = {Plasma instabilities of TeV pair beams induced by blazars}, doi = {10.25932/publishup-63013}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-630131}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 130}, year = {2024}, abstract = {Relativistic pair beams produced in the cosmic voids by TeV gamma rays from blazars are expected to produce a detectable GeV-scale cascade emission missing in the observations. The suppression of this secondary cascade implies either the deflection of the pair beam by intergalactic magnetic fields (IGMFs) or an energy loss of the beam due to the electrostatic beam-plasma instability. IGMF of femto-Gauss strength is sufficient to significantly deflect the pair beams reducing the flux of secondary cascade below the observational limits. A similar flux reduction may result in the absence of the IGMF from the beam energy loss by the instability before the inverse Compton cooling. This dissertation consists of two studies about the instability role in the evolution of blazar-induced beams. Firstly, we investigated the effect of sub-fG level IGMF on the beam energy loss by the instability. Considering IGMF with correlation lengths smaller than a few kpc, we found that such fields increase the transverse momentum of the pair beam particles, dramatically reducing the linear growth rate of the electrostatic instability and hence the energy-loss rate of the pair beam. Our results show that the IGMF eliminates beam plasma instability as an effective energy-loss agent at a field strength three orders of magnitude below that needed to suppress the secondary cascade emission by magnetic deflection. For intermediate-strength IGMF, we do not know a viable process to explain the observed absence of GeV-scale cascade emission and hence can be excluded. Secondly, we probed how the beam-plasma instability feeds back on the beam, using a realistic two-dimensional beam distribution. We found that the instability broadens the beam opening angles significantly without any significant energy loss, thus confirming a recent feedback study on a simplified one-dimensional beam distribution. However, narrowing diffusion feedback of the beam particles with Lorentz factors less than 1e6 might become relevant even though initially it is negligible. Finally, when considering the continuous creation of TeV pairs, we found that the beam distribution and the wave spectrum reach a new quasi-steady state, in which the scattering of beam particles persists and the beam opening angle may increase by a factor of hundreds. This new intrinsic scattering of the cascade can result in time delays of around ten years, thus potentially mimicking the IGMF deflection. Understanding the implications on the GeV cascade emission requires accounting for inverse Compton cooling and simulating the beam-plasma system at different points in the IGM.}, language = {en} } @phdthesis{Ahnert2010, author = {Ahnert, Karsten}, title = {Compactons in strongly nonlinear lattices}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-48539}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {In the present work, we study wave phenomena in strongly nonlinear lattices. Such lattices are characterized by the absence of classical linear waves. We demonstrate that compactons - strongly localized solitary waves with tails decaying faster than exponential - exist and that they play a major role in the dynamics of the system under consideration. We investigate compactons in different physical setups. One part deals with lattices of dispersively coupled limit cycle oscillators which find various applications in natural sciences such as Josephson junction arrays or coupled Ginzburg-Landau equations. Another part deals with Hamiltonian lattices. Here, a prominent example in which compactons can be found is the granular chain. In the third part, we study systems which are related to the discrete nonlinear Schr{\"o}dinger equation describing, for example, coupled optical wave-guides or the dynamics of Bose-Einstein condensates in optical lattices. Our investigations are based on a numerical method to solve the traveling wave equation. This results in a quasi-exact solution (up to numerical errors) which is the compacton. Another ansatz which is employed throughout this work is the quasi-continuous approximation where the lattice is described by a continuous medium. Here, compactons are found analytically, but they are defined on a truly compact support. Remarkably, both ways give similar qualitative and quantitative results. Additionally, we study the dynamical properties of compactons by means of numerical simulation of the lattice equations. Especially, we concentrate on their emergence from physically realizable initial conditions as well as on their stability due to collisions. We show that the collisions are not exactly elastic but that a small part of the energy remains at the location of the collision. In finite lattices, this remaining part will then trigger a multiple scattering process resulting in a chaotic state.}, language = {en} } @phdthesis{Ahlers2001, author = {Ahlers, Volker}, title = {Scaling and synchronization in deterministic and stochastic nonlinear dynamical systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000320}, school = {Universit{\"a}t Potsdam}, year = {2001}, abstract = {Gegenstand dieser Arbeit ist die Untersuchung universeller Skalengesetze, die in gekoppelten chaotischen Systemen beobachtet werden. Ergebnisse werden erzielt durch das Ersetzen der chaotischen Fluktuationen in der St{\"o}rungsdynamik durch stochastische Prozesse. Zun{\"a}chst wird ein zeitkontinuierliches stochastisches Modell f{\"u}rschwach gekoppelte chaotische Systeme eingef{\"u}hrt, um die Skalierung der Lyapunov-Exponenten mit der Kopplungsst{\"a}rke (coupling sensitivity of chaos) zu untersuchen. Mit Hilfe der Fokker-Planck-Gleichung werden Skalengesetze hergeleitet, die von Ergebnissen numerischer Simulationen best{\"a}tigt werden. Anschließend wird der neuartige Effekt der vermiedenen Kreuzung von Lyapunov-Exponenten schwach gekoppelter ungeordneter chaotischer Systeme beschrieben, der qualitativ der Abstoßung zwischen Energieniveaus in Quantensystemen {\"a}hnelt. Unter Benutzung der f{\"u}r die coupling sensitivity of chaos gewonnenen Skalengesetze wird ein asymptotischer Ausdruck f{\"u}r die Verteilungsfunktion kleiner Abst{\"a}nde zwischen Lyapunov-Exponenten hergeleitet und mit Ergebnissen numerischer Simulationen verglichen. Schließlich wird gezeigt, dass der Synchronisations{\"u}bergang in starkgekoppelten r{\"a}umlich ausgedehnten chaotischen Systemen einem kontinuierlichen Phasen{\"u}bergang entspricht, mit der Kopplungsst{\"a}rke und dem Synchronisationsfehler als Kontroll- beziehungsweise Ordnungsparameter. Unter Benutzung von Ergebnissen numerischer Simulationen sowie theoretischen {\"U}berlegungen anhand einer partiellen Differentialgleichung mit multiplikativem Rauschen werden die Universalit{\"a}tsklassen der zwei beobachteten {\"U}bergangsarten bestimmt (Kardar-Parisi-Zhang-Gleichung mit S{\"a}ttigungsterm, gerichtete Perkolation).}, language = {en} } @misc{AbdallaAdamAharonianetal.2020, author = {Abdalla, Hassan E. and Adam, Remi and Aharonian, Felix A. and Benkhali, Faical Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, Masanori and Arcaro, C and Armand, Catherine and Armstrong, T. and Egberts, Kathrin}, title = {Very high energy γ-ray emission from two blazars of unknown redshift and upper limits on their distance}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {4}, issn = {1866-8372}, doi = {10.25932/publishup-52600}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-526000}, pages = {15}, year = {2020}, abstract = {We report on the detection of very high energy (VHE; E > 100 GeV) gamma-ray emission from the BL Lac objects KUV 00311-1938 and PKS 1440-389 with the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observations were accompanied or preceded by multiwavelength observations with Fermi/LAT, XRT and UVOT onboard the Swift satellite, and ATOM. Based on an extrapolation of the Fermi/LAT spectrum towards the VHE gamma-ray regime, we deduce a 95 per cent confidence level upper limit on the unknown redshift of KUV 00311-1938 of z < 0.98 and of PKS 1440-389 of z < 0.53. When combined with previous spectroscopy results, the redshift of KUV 00311-1938 is constrained to 0.51 <= z < 0.98 and of PKS 1440-389 to 0.14 (sic) z < 0.53.}, language = {en} } @inproceedings{OPUS4-1412, title = {The 3rd international IEEE scientific conference on physics and control (PhysCon 2007) : September 3rd-7th 2007 at the University of Potsdam}, editor = {Kurths, J{\"u}rgen and Fradkov, Alexander and Chen, Guanrong}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15228}, pages = {345}, year = {2007}, abstract = {During the last few years there was a tremendous growth of scientific activities in the fields related to both Physics and Control theory: nonlinear dynamics, micro- and nanotechnologies, self-organization and complexity, etc. New horizons were opened and new exciting applications emerged. Experts with different backgrounds starting to work together need more opportunities for information exchange to improve mutual understanding and cooperation. The Conference "Physics and Control 2007" is the third international conference focusing on the borderland between Physics and Control with emphasis on both theory and applications. With its 2007 address at Potsdam, Germany, the conference is located for the first time outside of Russia. The major goal of the Conference is to bring together researchers from different scientific communities and to gain some general and unified perspectives in the studies of controlled systems in physics, engineering, chemistry, biology and other natural sciences. We hope that the Conference helps experts in control theory to get acquainted with new interesting problems, and helps experts in physics and related fields to know more about ideas and tools from the modern control theory.}, language = {en} } @inproceedings{OPUS4-8426, title = {Wolf-Rayet Stars}, editor = {Hamann, Wolf-Rainer and Sander, Andreas Alexander Christoph and Todt, Helge Tobias}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-84268}, year = {2015}, abstract = {Nearly 150 years ago, the French astronomers Charles Wolf and Georges Rayet described stars with very conspicuous spectra that are dominated by bright and broad emission lines. Meanwhile termed Wolf-Rayet Stars after their discoverers, those objects turned out to represent important stages in the life of massive stars. As the first conference in a long time that was specifically dedicated to Wolf-Rayet stars, an international workshop was held in Potsdam, Germany, from 1.-5. June 2015. About 100 participants, comprising most of the leading experts in the field as well as as many young scientists, gathered for one week of extensive scientific exchange and discussions. Considerable progress has been reported throughout, e.g. on finding such stars, modeling and analyzing their spectra, understanding their evolutionary context, and studying their circumstellar nebulae. While some major questions regarding Wolf-Rayet stars still remain open 150 years after their discovery, it is clear today that these objects are not just interesting stars as such, but also keystones in the evolution of galaxies. These proceedings summarize the talks and posters presented at the Potsdam Wolf-Rayet workshop. Moreover, they also include the questions, comments, and discussions emerging after each talk, thereby giving a rare overview not only about the research, but also about the current debates and unknowns in the field. The Scientific Organizing Committee (SOC) included Alceste Bonanos (Athens), Paul Crowther (Sheffield), John Eldridge (Auckland), Wolf-Rainer Hamann (Potsdam, Chair), John Hillier (Pittsburgh), Claus Leitherer (Baltimore), Philip Massey (Flagstaff), George Meynet (Geneva), Tony Moffat (Montreal), Nicole St-Louis (Montreal), and Dany Vanbeveren (Brussels).}, language = {en} } @inproceedings{OPUS4-1574, title = {Clumping in hot-star winds : proceedings of an international workshop held in Potsdam, Germany, 18. - 22. June 2007}, editor = {Hamann, Wolf-Rainer and Feldmeier, Achim and Oskinova, Lida}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-940793-33-1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13981}, pages = {254}, year = {2007}, abstract = {Stellar winds play an important role for the evolution of massive stars and their cosmic environment. Multiple lines of evidence, coming from spectroscopy, polarimetry, variability, stellar ejecta, and hydrodynamic modeling, suggest that stellar winds are non-stationary and inhomogeneous. This is referred to as 'wind clumping'. The urgent need to understand this phenomenon is boosted by its far-reaching implications. Most importantly, all techniques to derive empirical mass-loss rates are more or less corrupted by wind clumping. Consequently, mass-loss rates are extremely uncertain. Within their range of uncertainty, completely different scenarios for the evolution of massive stars are obtained. Settling these questions for Galactic OB, LBV and Wolf-Rayet stars is prerequisite to understanding stellar clusters and galaxies, or predicting the properties of first-generation stars. In order to develop a consistent picture and understanding of clumped stellar winds, an international workshop on 'Clumping in Hot Star Winds' was held in Potsdam, Germany, from 18. - 22. June 2007. About 60 participants, comprising almost all leading experts in the field, gathered for one week of extensive exchange and discussion. The Scientific Organizing Committee (SOC) included John Brown (Glasgow), Joseph Cassinelli (Madison), Paul Crowther (Sheffield), Alex Fullerton (Baltimore), Wolf-Rainer Hamann (Potsdam, chair), Anthony Moffat (Montreal), Stan Owocki (Newark), and Joachim Puls (Munich). These proceedings contain the invited and contributed talks presented at the workshop, and document the extensive discussions.}, language = {en} }