@article{MaslinPancostWilsonetal.2012, author = {Maslin, Mark A. and Pancost, Richard D. and Wilson, Katy E. and Lewis, Jonathan and Trauth, Martin H.}, title = {Three and half million year history of moisture availability of South West Africa evidence from ODP site 1085 biomarker records}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {317}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2011.12.009}, pages = {41 -- 47}, year = {2012}, abstract = {Ocean Drilling Program Site 1085 provides a continuous marine sediment record off southern South West Africa for at least the last three and half million years. The n-alkane partial derivative(13) C record from this site records changes in past vegetation and provides an indication of the moisture availability of SW Africa during this time period. Very little variation, and no apparent trend, is observed in the n-alkane delta C-13 record, suggesting stable long-term conditions despite significant changes in East African tectonics and global climate. Slightly higher n-alkane delta C-13 values occur between 3.5 and 2.7 Ma suggesting slightly drier conditions than today. Between 2.5 and 2.7 Ma there is a shift to more negative n-alkane delta C-13 values suggesting slightly wetter conditions during a similar to 0.2 Ma episode that coincides with the intensification of Northern Hemisphere Glaciation (iNHG). From 2.5 to 0.4 Ma the n-alkane delta C-13 values are very consistent, varying by less than +/- 0.5 parts per thousand and suggesting little or no long-term change in the moisture availability of South West Africa over the last 2.5 million years. This is in contrast to the long-term drying trend observed further north offshore from the Namib Desert and in East Africa. A comparison of the climate history of these regions suggests that Southern Africa may have been an area of long-term stability over the last 3.5 Myrs.}, language = {en} } @article{GaubertPatelVeronetal.2016, author = {Gaubert, Philippe and Patel, Riddhi P. and Veron, Geraldine and Goodman, Steven M. and Willsch, Maraike and Vasconcelos, Raquel and Lourenco, Andre and Sigaud, Marie and Justy, Fabienne and Joshi, Bheem Dutt and Fickel, J{\"o}rns and Wilting, Andreas}, title = {Phylogeography of the Small Indian Civet and Origin of Introductions to Western Indian Ocean Islands}, series = {The journal of heredity : official journal of the American Genetic Association}, volume = {108}, journal = {The journal of heredity : official journal of the American Genetic Association}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {0022-1503}, doi = {10.1093/jhered/esw085}, pages = {270 -- 279}, year = {2016}, abstract = {The biogeographic dynamics affecting the Indian subcontinent, East and Southeast Asia during the Plio-Pleistocene has generated complex biodiversity patterns. We assessed the molecular biogeography of the small Indian civet (Viverricula indica) through mitogenome and cytochrome b + control region sequencing of 89 historical and modern samples to (1) establish a time-calibrated phylogeography across the species' native range and (2) test introduction scenarios to western Indian Ocean islands. Bayesian phylogenetic analyses identified 3 geographic lineages (East Asia, sister-group to Southeast Asia and the Indian subcontinent + northern Indochina) diverging 3.2-2.3 million years ago (Mya), with no clear signature of past demographic expansion. Within Southeast Asia, Balinese populations separated from the rest 2.6-1.3 Mya. Western Indian Ocean populations were assigned to the Indian subcontinent + northern Indochina lineage and had the lowest mitochondrial diversity. Approximate Bayesian computation did not distinguish between single versus multiple introduction scenarios. The early diversification of the small Indian civet was likely shaped by humid periods in the Late Pliocene-Early Pleistocene that created evergreen rainforest barriers, generating areas of intra-specific endemism in the Indian subcontinent, East, and Southeast Asia. Later, Pleistocene dispersals through drier conditions in South and Southeast Asia were likely, giving rise to the species' current natural distribution. Our molecular data supported the delineation of only 4 subspecies in V. indica, including an endemic Balinese lineage. Our study also highlighted the influence of prefirst millennium AD introductions to western Indian Ocean islands, with Indian and/or Arab traders probably introducing the species for its civet oil.}, language = {en} } @article{DongesDonnerTrauthetal.2011, author = {Donges, Jonathan Friedemann and Donner, Reik Volker and Trauth, Martin H. and Marwan, Norbert and Schellnhuber, Hans Joachim and Kurths, J{\"u}rgen}, title = {Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {108}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {51}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1117052108}, pages = {20422 -- 20427}, year = {2011}, abstract = {Potential paleoclimatic driving mechanisms acting on human evolution present an open problem of cross-disciplinary scientific interest. The analysis of paleoclimate archives encoding the environmental variability in East Africa during the past 5 Ma has triggered an ongoing debate about possible candidate processes and evolutionary mechanisms. In this work, we apply a nonlinear statistical technique, recurrence network analysis, to three distinct marine records of terrigenous dust flux. Our method enables us to identify three epochs with transitions between qualitatively different types of environmental variability in North and East Africa during the (i) Middle Pliocene (3.35-3.15 Ma B. P.), (ii) Early Pleistocene (2.25-1.6 Ma B. P.), and (iii) Middle Pleistocene (1.1-0.7 Ma B. P.). A deeper examination of these transition periods reveals potential climatic drivers, including (i) large-scale changes in ocean currents due to a spatial shift of the Indonesian throughflow in combination with an intensification of Northern Hemisphere glaciation, (ii) a global reorganization of the atmospheric Walker circulation induced in the tropical Pacific and Indian Ocean, and (iii) shifts in the dominating temporal variability pattern of glacial activity during the Middle Pleistocene, respectively. A reexamination of the available fossil record demonstrates statistically significant coincidences between the detected transition periods and major steps in hominin evolution. This result suggests that the observed shifts between more regular and more erratic environmental variability may have acted as a trigger for rapid change in the development of humankind in Africa.}, language = {en} } @article{BernerTrauthHolschneider2022, author = {Berner, Nadine and Trauth, Martin H. and Holschneider, Matthias}, title = {Bayesian inference about Plio-Pleistocene climate transitions in Africa}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {277}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2021.107287}, pages = {12}, year = {2022}, abstract = {During the last 5 Ma the Earth's ocean-atmosphere system passed through several major transitions, many of which are discussed as possible triggers for human evolution. A classic in this context is the possible influence of the closure of the Panama Strait, the intensification of Northern Hemisphere Glaciation, a stepwise increase in aridity in Africa, and the first appearance of the genus Homo about 2.5 - 2.7 Ma ago. Apart from the fact that the correlation between these events does not necessarily imply causality, many attempts to establish a relationship between climate and evolution fail due to the challenge of precisely localizing an a priori unknown number of changes potentially underlying complex climate records. The kernel-based Bayesian inference approach applied here allows inferring the location, generic shape, and temporal scale of multiple transitions in established records of Plio-Pleistocene African climate. By defining a transparent probabilistic analysis strategy, we are able to identify conjoint changes occurring across the investigated terrigenous dust records from Ocean Drilling Programme (ODP) sites in the Atlantic Ocean (ODP 659), Arabian (ODP 721/722) and Mediterranean Sea (ODP 967). The study indicates a two-step transition in the African climate proxy records at (2.35-2.10) Ma and (1.70 - 1.50) Ma, that may be associated with the reorganization of the Hadley-Walker Circulation. .}, language = {en} } @phdthesis{Berner2016, author = {Berner, Nadine}, title = {Deciphering multiple changes in complex climate time series using Bayesian inference}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100065}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 135}, year = {2016}, abstract = {Change points in time series are perceived as heterogeneities in the statistical or dynamical characteristics of the observations. Unraveling such transitions yields essential information for the understanding of the observed system's intrinsic evolution and potential external influences. A precise detection of multiple changes is therefore of great importance for various research disciplines, such as environmental sciences, bioinformatics and economics. The primary purpose of the detection approach introduced in this thesis is the investigation of transitions underlying direct or indirect climate observations. In order to develop a diagnostic approach capable to capture such a variety of natural processes, the generic statistical features in terms of central tendency and dispersion are employed in the light of Bayesian inversion. In contrast to established Bayesian approaches to multiple changes, the generic approach proposed in this thesis is not formulated in the framework of specialized partition models of high dimensionality requiring prior specification, but as a robust kernel-based approach of low dimensionality employing least informative prior distributions. First of all, a local Bayesian inversion approach is developed to robustly infer on the location and the generic patterns of a single transition. The analysis of synthetic time series comprising changes of different observational evidence, data loss and outliers validates the performance, consistency and sensitivity of the inference algorithm. To systematically investigate time series for multiple changes, the Bayesian inversion is extended to a kernel-based inference approach. By introducing basic kernel measures, the weighted kernel inference results are composed into a proxy probability to a posterior distribution of multiple transitions. The detection approach is applied to environmental time series from the Nile river in Aswan and the weather station Tuscaloosa, Alabama comprising documented changes. The method's performance confirms the approach as a powerful diagnostic tool to decipher multiple changes underlying direct climate observations. Finally, the kernel-based Bayesian inference approach is used to investigate a set of complex terrigenous dust records interpreted as climate indicators of the African region of the Plio-Pleistocene period. A detailed inference unravels multiple transitions underlying the indirect climate observations, that are interpreted as conjoint changes. The identified conjoint changes coincide with established global climate events. In particular, the two-step transition associated to the establishment of the modern Walker-Circulation contributes to the current discussion about the influence of paleoclimate changes on the environmental conditions in tropical and subtropical Africa at around two million years ago.}, language = {en} }